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The trace formula is one of the most powerful methods so far in studying the Lang-
lands program. It describes the character of the representation of G(AF ) on the discrete
part L2

0(G(F )\G(AF )) of L2(G(F )\G(AF )) in terms of geometric data, where G is a
reductive algebraic group defined over a global field F and AF is the ring of adeles
of F . We usually calculate the geometric side to get information on the mysterious
spectral side. Applications of the trace formula include the functoriality principle and
classification of automorphic representations. The first three sections are essentially a
summary of Arthur’s lecture notes [Art4].

1. The Trace Formula

Let G be an algebraic group defined over Q. We are mainly interested in L2(Γ\X)
where Γ is a discrete subgroup of G(R), or Γ\X = G(F )\G(A). As a general principle in
representation theory, the study of representations is essentially the study of characters,
or, the traces of operators. The Selberg-Arthur trace formula describes the character
of the representation of G(A) on the discrete part L2

0(G(F )\G(A)) of L2(G(F )\G(A))
in terms of geometric data. In most cases of Selberg-Arthur trace formula, the quotient
G(F )\G(A) is not compact, which causes the following problems:

(a). Spectral side: The representation on L2(G(F )\G(A)) contains not only discrete
components but also continuous components. So we need a good description of
the spectrum decomposition.

(b). Geometric side: The kernel is no longer integrable over the diagonal, and the
operators R(f) are no longer of trace class. We have to modify divergent
integrals to make them converge. Note that traces should be interpreted as
distributions, not simply functions.

Another method is to just considering simple functions to avoid the difficulties men-
tioned above. This is the so-called simple trace formula. The formula is easier to
calculate in practice, but it will be less powerful theoretically. We will not discuss this
here.

[Lap] is a short introduction to the trace formula. [Whi1] is an introduction to
the trace formula for GL2. Some functional analysis nonsense. [Art4] is an excellent
introduction to trace formulas and their applications in automorphic representations.
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1.1. Compact case. In this subsection, we assume that G is defined over Q. G(R) is
then a Lie group. We use G to stand for this Lie group to simplify notations. Fix a Haar
measure dg of G. Let Γ be a cocompact arithmetic subgroup of G. The Haar measure
descends to a Haar measure dx on Γ\G by the left-invariance of dg. We consider the
regular representation R of G on L2(Γ\G):

[R(g)]ϕ(x) = ϕ(xg), g ∈ G, x ∈ Γ\G.

This extends to a representation of the convolution algebra C∞
c (G) 1 :

[R(f)]ϕ(x) =

∫
G
f(g)ϕ(xg)dg =

∫
G
f(x−1g)ϕ(g)dg2

The operator R(f) is of trace class, and we want to compute tr(R(f)). There are
two methods to compute it:

(1) Geometric method. If f ∈ C∞
c (G), the operator R(f) has a kernel Kf (x, y) =∑

γ∈Γ
f(x−1γy):

[R(f)]ϕ(x) =

∫
G
f(x−1g)ϕ(g)dg =

∫
Γ\G

∑
γ∈Γ

f(x−1γy)ϕ(y)dy.

tr(R(f)) is just the integral of the kernel over the diagonal (the trace of an
“infinite dimensional” matrix is the “sum” over the diagonal):

tr(R(f)) =

∫
Γ\G

Kf (x, x)dx =

∫
Γ\G

∑
γ∈Γ

f(x−1γx)dx.

We can break the sum over γ into conjugacy classes of Γ. The conjugacy
class

[γ] = {δ−1γδ : δ ∈ Γγ\Γ}
where Γγ is the centralizer of γ in Γ, contributes∫
Γ\G

∑
δ∈Γγ\Γ

f(x−1δ−1γδx)dx =

∫
Γγ\G

f(x−1γx)dx = vol(Γγ\Gγ)I(γ, f),

where I(γ, f) is the orbital integral

I(γ, f) =

∫
Gγ\G

f(x−1γx)dx.

In summary,

(1) tr(R(f)) =
∑
[γ]

vol(Γγ\Gγ)I(γ, f)3.

1Formally, R(f) =
∫
G
R[g]f(g)dg. It is the weighted integration of the operator R(g) with respect

to the measure f(g)dg. We can also define R(dµ) =
∫
G
R[g]dµ(g) for a bounded measure dµ.

2Of course, the ϕ(g) in the third term means the lifting to G under the natural projection p : G →
Γ\G.

3Clearly, the volume and the orbital integral are all defined on conjugacy classes.
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(2) Spectral method. First recall that we have a very simple description of the
regular representation in the compact case:

Proposition 1.1 (Gelfand-Graev-Piatetski-Shapiro). L2(Γ\G) decomposes dis-
cretely into a direct sum of irreducible representations of G, each occuring with
finite multiplicity 4.

Let Ĝ be the unitary dual of G, from the representation decomposition

R =
∑
π∈Ĝ

m(π)π,

we get another computation of the trace

(2) tr(R(f)) =
∑
π∈Ĝ

m(π)tr π(f).

Remark 1.1. The trace map tr(π) : C∞
c (G(F )) → C defines a distribution. Let Greg ≤

G denote the subscheme consisting of regular semisimple elements; this is the subscheme
such that

Greg(R) = {γ ∈ G(R) : C◦
γ is a maximal torus}.

The Harish-Chandra theorem asserts that the distribution tr(π) is represented by a
locally constant function with support in Greg(F ).

Then the Selberg trace formula says that the geometric trace (1) and the spectral
trace (2) are equal: ∑

[γ]

vol(Γγ\Gγ)I(γ, f) =
∑
π∈Ĝ

m(π)tr π(f).

In particular, if we set G = R = Ga(R) and Γ = Z, we recover the Poisson summation
formula:

(3)
∑
n∈Z

f(n) =
∑
n∈Z

f̂(n), f ∈ C∞
c (R).

1.2. Arthur’s trace formula. Now we want to study the right regular representation
on L2(G(Q)\G(A)) for a general algebraic group over Q. The space G(Q)\G(BA) is
not compact, which makes the trace formula difficult. Let f be a smooth function of
compact support, now the kernel operator is not of trace class. As pointed out in [Art4],
the divergence comes from parabolic subgroups. Fix a minimal parabolic subgroup P0.
We truncate the kernel function Kf by an alternating sum of functions parameterized
by standard parabolic subgroups. The truncation depends on a parameter T ∈ ia∗P and
is defined for sufficiently regular T . After the truncation, KT

f is “supported in a large
compact subset”. So we may compute the geometric and spectral side of this kernel
function. We, therefore, get a family of equations, depending on T .

But this is not what we really want. We need something intrinsic, that is, indepen-
dent of our truncation parameter T . It turns out that both sides of the equations are

4If Γ is the trivial group, this is (part of) the Peter-Weyl theorem.
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polynomials of T . Therefore, the “constant term” could be an intrinsic formula. This
is the trace formula we get:

Theorem 1.2 (Arthur’s trace formula).

(4)
∑
o∈O

Jo(f) =
∑
χ∈X

Jχ(f), f ∈ C∞
c (G(A))

We will explain the terms and their calculations in the following subsections. We
may calculate the terms in the trace formula explicitly by calculating explicitly the
truncated trace formula and then take constant coefficients. But this only works for
very simple groups. On the other hand, for general groups, the generic term in the
formula is a weighted orbital integral or a weighted character.

1.2.1. Truncations. The kernel k(x, x) does not converge, so we need to truncate it
to male it converge. The truncation depends on a fixed minimal parabolic subgroup
P0 and a regular element T ∈ a+0 . The truncation is a sum over standard parabolic
subgroups relative to P0. So we first recall some standard definitions.

Let G be an algebraic group over Q. We write AG for the largest central subgroup
of G over Q that is a Q-split torus. The rank of AG is called the rank of G. We write
X(G)Q for the additive group of homomorphisms χ : g → gχ from G to GL(1) that are
defined over Q. Then X(G)Q is a free abelian group of rank k. WE also form the real
vector space

aG = HomZ(X(G)Q,R)
of dimension k. There is then a surjectuve homomorphism HG : G(A) → aG, defined
by

⟨HG(x), χ⟩ = | log(xχ)|, x ∈ G(A), χ ∈ X(G)Q.

A parabolic subgroup of G is a Q-algebraic subgroup P such that P (C)\G(C) is
compact. Any such P has a Levi decomposition P = MNP , which is a semidirect
product of a reductive subgroup M of G over Q with a normal unipotent subgroup NP

of G over Q. The unipotent radical NP is uniquely determined by P , while the Levi
component M is uniquely determined up to conjugacy by P (Q).

Let P0 be a fixed parabolic subgroup of G with a fixed Levi decomposition P0 =
M0N0. Any subgroup P that contains P0 is called a standard parabolic subgroup.
The set of standard parabolic subgroup is finite, and is a set of representatives of the
set of G(Q)-conjugacy classes of parabolic subgroups over Q. A standard parabolic
subgroup has a canonical Levi decomposition P = MPNP , where MP is the unique
Levi component of P that contains P0. From MP , we can form the central subgroup
AP = AMP

, the real vector space aP = aMP
, and the surjective homomorphism HP =

HMP
. When P = G, we recover the original definition of AG, aG, and HG. If P = P0,

we use the notations A0, a0, and H0. We extend HP to a fucntion from G(A) by setting
HP (nmk) = HMP

(m).
We have a variant of the regular representation R for any standard parabolic sub-

group P . It is the regular representation RP of G(A) on L2(NP (A)MP (Q)\G(A)). It
is the induced representation

RP = Ind
G(A)
NP (A)MP (Q)(1NP (A)MP (Q)) ∼= Ind

G(A)
P (A)(1NP (A) ⊗RMP

).
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RP (f) is an integral operator with kernel

KP (x, y) =

∫
NP (A)

∑
γ∈MP (Q)

f(x−1γny)dn, x, y ∈ NP (A)MP (Q)\G(A).

For a given standard parabolic subgroup P , we may define two subsets of aP : the
set of roots ∆P and the set of weights ∆̂P . We write τP for the characteristic function
of the subset

a+P = {t ∈ aP : α(t) > 0, α ∈ ∆(P )}
of aP . We also write τ̂P for the characteristic function of the subset

{t ∈ aP : ϖ(t) > 0, ϖ ∈ ∆̂P }.

The truncation of K(x, x) depends on a parameter T in the cone a+0 that is suitably
regular. For any given T , we define

kT (x) = kT (x, f) =
∑
P

(−1)dimAP /AG
∑

δ∈P (Q)\G(Q)

KP (δx.δx)τ̂P (HP (δx)− T ).

It is a well-defined function of x ∈ G(Q)\G(A).

Theorem 1.3. The integral

JTf =

∫
G(Q)\G(A)1

kT (x, f)dx

converges absolutely.

The convergent integrals are not what we really want as they depend on a parameter
T . To get intrinsic trace formula, we need to study the behavior of the truncated
integrals with respect to the parameter T .

Theorem 1.4. For any f ∈ C∞
c (G(A)), the function

T 7→ JTf ,

defined for T ∈ a+0 sufficiently regular, is a polynomial in T whose degree is bounded
by the dimension of aG0 .

From the above theorem, we may expect that the constant coefficients, or higher
coefficients, could be a candidate for the intrinsic trace formula. It turns out that there
is a better choice in general. The question is related to the choice of minimal parabolic
subgroup P0

In the definition of truncation functor, we fixed a minimal parabolic subgroup P0.
FixM0, and let write P(M0) for the set of minimal parabolic subgroups of G with Levi
component M0. If we change the choice of P0 in PM0 , we get different polynomials
in a0. However, there is a unique point T0 (depending on K), such that the value of
polynomials is independent of the choice of P0. The value at this point is the real
“constant term”. If G = GL(n) with the canonical choice of K, the point T0 is zero,
as expected.

We define J(f) as the value of JT (f) at the point T0, f 7→ J(f) is a distribution on
G(A).
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Remark 1.2. The distribution J satisfies the formula

J(fy) =
∑
Q⊃P0

JMQ(fQ,y)

for conjugation of f ∈ C∞
c (G(A)) by y ∈ G(A): fy(x) = f(yxy−1). The transforma-

tion f → fQ,y is a continuous linear mapping from C∞
c (G(A)) to C∞

c (MQ(A)) defined
in [Art4], P53. In general, the trace formula is not invariant over conjugacy, so we need
a stable trace formula.

The next step is to study the distribution J in geometric and spectral methods, and
the equality of the two expansions is the trace formula.

1.2.2. The coarse geometric expansion. We want to get a geometric expansion of J(f)
from the geometric expansion of JT (f). However, the truncation kT (f) of K(x, x) is
not completely compatible with the decomposition of K(x, x) according to conjugacy
classes. We need a weaker conjugacy class.

We define two elements γ and γ′ in G(Q) to be O-equivalent if their semisimple parts
γs and γ

′
s are G(Q)-conjugate. We then write O for the set of such equivalence classes

in G(Q). A class o ∈ O is thus a union of conjugacy classes in G(Q). The set O is in
obvious bijection with the semisimple conjugacy classes in G(Q).

We say that a semisimple conjugacy class in G(Q) is anisotropic if it does not inter-
sect P (Q) for any P ⊂ G. Then γ ∈ G(Q) represents an isotropic class if and only if
AG is the maximal Q-split torus in the connected centralizer H of γ in G. We define an
anisotropic rational datum to be an equivalence class of pairs (P, α), where P ⊂ G is a
standard parabolic subgroup, and α is an anisotropic conjugacy class in MP (Q). The
equivalence relation is just conjugacy. The mapping sends {(P, α)} to the conjugacy
class α in G(Q) is a bijection onto the set of semisimple conjugacy classes in G(Q).

Example 1.5. In case G = GL(n), the O-equivalence classes are parameterized by the
set of complex eigenvalues or characteristic polynomials.

Under this coarser equivalence class, kT (x) =
∑
o∈O

kTo (x), where

kTo (x) = kTo (x, f) =
∑
P

(−1)dimAP /AG

∫
δ∈P (Q)\G(Q)

KP,o(δx, δx)τ̂P (HP (δx)− T ).

This decomposition induces decomposition

JT (f) =
∑
o∈O

JTo (f).

The convergence and growth conditions of JTo (f) can be obtained similarly to that
of JT (f). Evaluating at the point T0, we get the coarse geometric expansion:

J(f) =
∑
o∈O

Jo(f), f ∈ C∞
c G(A).

Remark 1.3. For each o ∈ O, we still have the relation

Jo(f
y) =

∑
oQ⊃P0

J
MQ
o (fQ,y)
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where oQ ranges over the finite preimage of o in OMQ under the obvious mapping of

OMQ into O = OG.
If o is anisotropic, it does not lie in the image of the map OMQ → O attached to any

proper parabolic subgroup Q ⊊ G. The distribution Jo is invariant in this case.

What are the integrals Jo(f)? We would expect, as in the compact case, they are
products of volumes and orbital integrals. This is too optimistic, but is true for a generic
class, just replacing the orbital integrals with weighted orbital integrals. Suppose that
(P, α) represents the anisotropic rational datum attached to o, and γ belongs to the
anisotropic conjugacy class α in MP (Q). We say that o is unramified if G(Q)γ is also
contained inMP . This is equivalent to asking that the centralizer of the conjugacy class
α inW (aP , aP ) be equal to {1}. In the case G = GL(n), this condition is automatically
satisfied.

Theorem 1.6. Suppose that o ∈ O is an unramified class, with anisotropic rational
datum represented by a pair (P, α). Then

Jo(f) = vol(MP (Q)γ\MP (A)1γ)
∫
G(A)γ\G(A)1

f(x−1γx)vP (x)dx,

where γ is any element in the MP (Q)-conjugacy class α, and vP (x) is the volume of
some set depending on x, see [Art4].

1.2.3. The coarse spectral expansion. We define a cuspidal automorphic data to be an
equivalence class of pairs (P, σ), where P ⊂ G is a standard parabolic subgroup of G,
and σ is an irreducible representation of MP (A)1 occurring in L2

cusp(MP (Q)\MP (A)1).
The equivalence relation is defined by conjugacy. We write X for the set of cuspidal
automorphic date χ = {(P, σ)}.

For any P , we find a orthogonal basis BP ofHP with is compatible with χ-decompositon:
BP =

∐
BP,χ. For any χ ∈ X , let

Kχ(x, y) =
∑

n−1
P

∫
ia∗P

∑
ϕ∈BP,χ

E(x, IP,χ(λ, f)ϕ, λ)E(y, ϕ, λ)dλ.

Kχ(x, y) is the kernel of the restriction ofR(f) to the invariant subspace L2
χ(G(Q)\G(A)).

So we have the decomposition

K(x, y) =
∑

Kχ(x, y).

We then use a similar method in defining coarse geometric expansion to get kT (x) =∑
kTχ (x), and a coarse spectral expansion

J(f) =
∑
χ∈X

Jχ(f), f ∈ C∞
c (G(A))

Remark 1.4. The convergence on the spectral side is more subtle. We need to define
another truncation function ΛT2 and compare the two functors. See [Art4].

Remark 1.5. The distributions Jχ(f) are again generally not invariant. We actually
have the variance property

Jχ(f
y) =

∑
Q⊃P0

J
MQ
χ (fQ,y).
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As before, J
MQ
χ is defined as a finite sum of distributions J

MQ
χQ , in which χQ ranges over

the preimage of χ in XMQ under the mapping of XMQ to X .
If χ is cuspidal, it does not lie in the image of the map XMQ to X attached to any

proper parabolic subgroup Q ⊊ G. The distribution Jχ is then invariant.

Again we want to find Jχ(f) explicitly, and we expect that it is a product of a
multiplicity and a trace. This is almost true for a generic χ, with the modification that
we need a twisted character.

We say a class χ is unramified if for every pair (P, σ) ∈ χ, the stabilizer of π in
W (aP , aP ) is {1}.

Theorem 1.7. Suppose that χ = {(P, π)} is unramified. Then

Jχ(f) = mcusp(π)

∫
ia∗P

tr(MP (π(λ)))IP (πλ, f)dλ.

We have two expansions of J(f), the coarse geometric expansion (LHS of 4) and the
coarse spectral expansion (RHS of 4), then the trace formula is that the two expansions
are the same (4).

1.3. An example: GL2. see [Whi1] or [Cha]. The geometry and spectrum of GL2

are simple and explicit, so we may calculate everything to get the trace formula.
The only rational character is given by det. Therefore, G1

1.3.1. Arthur’s truncation.

1.3.2. Spectral decomposition. Let B be an orthonormal basis of H. The Langlands
decomposition gives the following expression

Kcont(x, y) =
1

2

∫
iR

∑
ϕ∈B

E(x,Rs(f)ϕ, s)E(y, ϕ, s)ds5

for any x, y ∈ G1.

1.4. Applications. As pointed out in [Whi1], applications of the trace formula usually
fall into one of the two categories.

• Using the trace formula in isolation. One can attempt to compute the geometric
expansion of the trace formula for suitable test functions f . This leads to
dimension formulas for spaces of automorphic forms, closed forms for traces of
Hecke operators, the existence of cusp forms, and Weyl’s law, etc.

• Comparing the trace formula as one varies the group G. One can perhaps
imagine trying to match up the geometric sides of the trace formula for different
groups. This leads to Langlands functorialities, and decomposition of the L-
function of a Shimura variety into products of automorphic L-functions when
the trace formula is compared with the Lefschetz fixed point formula.

5This is a continuous version of the formula trA =
∑

⟨Aei, ei⟩.
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1.4.1. Weyl’s law. Let X be a compact Riemannian manifold. The Laplacian has a
discrete spectrum with nonnegative eigenvalues. Weyl’s law studies the distribution
of these eigenvalues. Specifically, it studies the asymptotic growth of the number of
eigenvalues λi such that |λi| ≤ T when T → ∞. If we study the torus R2/Z2, this
is equivalent to counting the integral points in the discs {(x, y)|x2 + y2 ≤ R2} when
R→ ∞. Now we may use the trace formula to prove Weyl’s law for compact quotients
Γ\H. See [LV] and [Whi1] for an exposition.

Theorem 1.8 (Weyl’s law). Let Γ be a discrete cocompact hyperbolic subgroup of
SL2(R). Let 0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · denote the eigenvalues of ∆ (appearing with
multiplicity) acting on A(Γ\H). For T > 0 we set NΓ(T ) = #{j : λj < T}. Then

NΓ(T ) ∼
area(Γ\H)

4π
T.

Proof. The unitary representations of SL2(R) are well-known. They are discrete series,
limits of discrete series, some principal series representations, complementary series,
and the trivial representation. The spherical representations (non-trivial representa-
tions V with nonvanishing V K where K = SO(2) is the maximal compact subgroup)
are unitary principal series representations and complementary series.

Consider the right regular representation of SL2(R) on L2(Γ\G). Only subrepresen-
tations with nonzero K-fixed vectors induce functions on Γ\H. The Casimir element
D ∈ U(gC) acts on these representations as scalars and turns out to be the Laplacian
on Γ\H. Now the spherical representations can be recovered from the Hecke algebra
C∞
c (G//K). By Satake isomorphism, this is isomorphic to C∞

c (A)W where A ∼= R is
the split torus, W ∼= S2 is the Weyl group. The latter is exactly the space of even
functions.

So we study the trace formulas for even functions g. Write λj =
1
4 +r

2
j . The spectral

side is the sum of its Fourier transform on rj . The geometric side is more complicated,
involving a main term (associated with the trivial conjugacy class {e}) containing
the area and some higher order terms coming from closed geodesics (associated with
nontrivial-conjugacy classes). If we choose carefully the function g, the higher order
terms vanish. We choose carefully a function g with certain growth conditions and
consider scalings of g. The trace formulas for gt produce Weyl’s law. Details are in
[Whi1] or [LV]. □

If Γ is not cocompact, a brief discussion is in [Lap].

1.4.2. Jacquet-Langlands correspondence. Suppose G is an inner form of G′, their L-
groups are canonically isomorphic. Langlands functoriality predicts a correspondence
between automorphic representations of these groups. Jacquet-Langlands establishes
(part of) such correspondence. The proof relies on a comparison of the trace formulas
for different groups.

First, let us consider some representations of two simple groups over R.
• SO(3). We already know the representations of SU(2). We have the standard
representation V , and all irreducible representations of SU(2) are of the form
SymkV for some non-negative integer k. we also know that SU(2) is isomorphic
to the spin group Spin(3) ([BD]). It is therefore a double covering of SO(3)
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with kernel {±I}. Therefore, the representations of SO(3) are exactly the
representations of SU(2) such that −I acts as identity. The representations
SymnV with even k descend to representations of SO(3), and these are all
irreducible representations of SO(3). In summary, the representations of SO(3)
are parameterized by the dimensions n which must be odd. We call them πn.

• PGL(2,R). We consider discrete series representations 6 of PGL(2,R). We
have discrete series representations D±

k (k ≥ 1) of SL(2,R). We consider the
induced representations

Dk = Ind
SL±(2,R)
SL(2,R) D+

k = Ind
SL±(2,R)
SL(2,R) D−

k .

They are irreducible unitary representations of SL±(2,R), and the restriction
to SL(2,R) is D+

k ⊕D−
k . Again, SL±(2,R) is a double covering of PGL(2,R)

with kernel {±I}. So the discrete series Dn with odd n define discrete se-
ries representations of PGL(2,R). We call them σn. In particular, σ1 is the
Steinberg representation.

Therefore, we have a naive correspondence between representations of SO(3) and
discrete series of PGL(2,R). But we could say more, their characters are related by
the equation 7

χπn

((
cos θ/2 sin θ/2
− sin θ/2 cos θ/2

))
= −χσn

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 , θ ∈ [0, 2π].

This is the Jacquet-Langlands correspondence over R.
What happens if we are considering representation theory over a nonarchimedean

local field F? Recall that over such an F there exists a unique quaternion algebra
D with center F . The multiplicative group D∗ is an inner form of G = GL(2, F ).
Moreover, the conjugacy classes of D∗ correspond bijectively to the elliptic conjugacy
classes of G. The correspondence is defined by forcing the reduced trace and reduced
norm of x ∈ D∗ equal to the trace and determinant of g ∈ GL(2, F )8. The local Jacquet-
Langlands correspondence asserts a bijection of between the equivalence classes of the
irreducible representations of D∗ and those of the discrete series of G 9. If π maps to
σ under this correspondence then χπ(x) = −χσ(g) whenever the conjugacy classes of
x and g correspond.

Now we can consider the glocal case. Recall that a quaternion algebra over R are in
one-to-one correspondence with finite subsets of places of Q with the even cardinality.
This correspondence is achieved by assigning to D the set S of places where it is rami-
fied. Let D (and therefore S) be given. Set G′ = D∗, and let G′(A)1 be the elements of

6Nontrivial finite-dimensional representations of PGL(2,R) are not unitary.
7Note that SO(3) is compact, so any element is conjugate to an element in the maximal torus. But

this does not hold true for PGL(2,R).
8Note that the invariants are defined over conjugacy classes. For GL(2, F ), the trace and determi-

nant determine a semisimple conjugacy class, thus determining a unique elliptic conjugacy class.
9There are two types of discrete series representations. One consists of the supercuspidal representa-

tions, their matrix coefficient are compactly supported. Another consists of the special representations,
obtained from certain reducible principal series representations.
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G(A) with reduced norm 1. G′\G′(A)1 is compact and therefore L2(G′\G′(A)1) decom-
poses discretely into a direct sum of irreducible representations. The one-dimensional
constituents are the characters χ◦Ndr where χ is a Dirichlet character of Q∗\A∗. They
naturally correspond to the one-dimensional representations χ◦det of L2(G(Q)\G(A)1).

Theorem 1.9 (Global Jacquet-Langlands). • L2(G′\G′(A)1) is multiplicity free.
• Suppose that σ = ⊗vσv is an irreducible constituent which is not one-dimensional.
Define π = ⊗vπv if v /∈ S and πv corresponds to σv under the local Jacquet-
Langlands correspondence if v ∈ S. Then π is a cuspidal representation of
G(A).

• Conversely, any cuspidal representation π = πv of G(A) such that πv is square-
untegrable for all v ∈ S is obtained from an automorphic representation of G′

by the above procedure.

The proof relies on a comparison between the trace formulas for the two groups.
To make such a comparison, we first have to define a transfer of functions over the
two spaces. We may assume f ′ = f ′v is decomposable, we need to define a function f .
There is a naive identification outside S. If v ∈ S, we choose fv as a ‘zero extension’
of f ′v: its orbital integral over elliptic conjugacy classes is the same as that of f ′v under
the correspondence of conjugacy classes, and its orbital integral over other classes are
zero.10 Then we need to compare the traces of f ′ and f . If we consider all compactly
supported functions, we have to consider continuous spectrum. However, we only need
to consider the image of f ′v under the transfer. The vanishing condition guarantees
that all the supplementary terms vanish11. Therefore, we get an equation∑

π′∈
∏

(G′)

m(π,R′)tr(π(f ′)) =
∑

π∗∈
∏

(G)

m(π,Rdisc)tr(π(f)).

This is an example of the simple trace formula. Since the trace formulas are the
same for all f ′, the only possibility is that all multiplicities of the corresponding repre-
sentations are the same.

Remark 1.6. There are many generalizations of Jacquet-Langlands correspondence.
The most straightforward one is the generalization to GL(n).

There is a geometric approach to the local Jacquet-Langlands correspondence by
Yoichi Mieda using the ℓ-adic étale cohomology of the Drinfeld twoer ([Mie]).

Remark 1.7. The simplest application should be the computation of dimensions of
modular forms. ([JL2])

In the case v∞ /∈ V , it implies a correspondence between spectra of Laplacians on
certain compact Riemann surfaces, and discrete spectra of Laplacians on non-compact
surfaces.

Jacquet-Langlands correspondence can also be used to define non-isometric spaces
with the same spectrum decomposition, giving a negative answer to the question: Can
one hear the shape of a drum? ([Kac]).

10Of course, we need to show the existence of such functions. That is, the function defined over
conjugacy classes lifts too a function over the whole space.

11The bad behavior of trace formula comes from parabolic subgroups.
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We may also construct a counterexample as follows. Let Λ be an even unimodular
form in Rm, then the theta series associated with Λ is a modular form for SL(2,Z)
of weight m/2. The eigenvalues of the Laplacian of Rm/Λ are nonnegative integers
n with multiplicities the Fourier coefficients of the associated theta series. Now we
know m|8. And we may find two non-isomorphic even unimodular lattices Λ1 and Λ2

in R16. But dimM8(SL(2,Z)) = 1. So the Riemannian manifolds R16/Λ1 and R16/Λ2

are non-isomorphic but have the same spectral decomposition.([BGHZ])

2. The invariant trace formula

The original trace formula is the equality of two expressions of the distribution J(f).
As we have seen, J is not invariant under conjugation, so is easy to use in practice.
We always assume that we want to study spectral decompositions and therefore only
conjugation-invariant objects are interested. So we need a refined version of the trace
formula. We need to modify the distribution J to get a conjugation-invariant distri-
bution I(f). And the stable trace formula is an equality of two expressions of the new
distribution I(f). Another advantage of the stable trace formula is that we have ex-
plicit formulas to compute the local contributions over arbitrary conjugacy classes and
characters, they are weighted sums of weighted orbital integrals or weighted characters.

2.1. The fine geometric and spectral expansions.

Theorem 2.1. For any f ∈ H(G), J(f) has a geometric expansion

J(f) = lim
S

∑
M

|WM
0 |

|WG
0 |

∑
γ∈Γ(M)

aM (γ)JM (γ, f),

and a spectral expression

J(f) = lim
T

∑
M

|WM
0 |

|WG
0 |

∫
Π(M)

aM (π)JM (π, f)dπ.

2.2. The invariant trace formula. In order to use the trace formula to study rep-
resentations, we need to modify the distribution J to make it invariant. The invariant
distribution I(f) is defined inductively as

I(f) = J(f)−
∑

L∈L,L ̸=G
|WL

0 ||WG
0 |−1ÎL(ϕL(f)).

The distribution I is a linear combination of distributions indexed by Levi subgroups
of G, assuming the existence of invariant distributions on all Levi subgroups. In the
above definition, ϕL is a continuous linear transformation from Hac(G) to Hac(L), Î is
the invariant linear form induced from the distribution IL on Hac(L).

The invariant trace formula is the equation of two expansions of the distribution
I(f). We need to construct an invariant version of linear forms JM (γ, f) and JM (π, f).

Theorem 2.2. For any f ∈ H(G), I(f) has a geometric expression

I(f) = lim
S

∑
M

|WM
0 |

|WG
0 |

∑
γ∈Γ(M)

aM (γ)IM (γ, f),
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and a spectral expression

I(f) = lim
T

∑
M

|WM
0 |

|WG
0 |

∫
Π(M)

aM (π)IM (π, f)dπ.

2.3. Applications.

2.3.1. Inner forms of GL(n).

2.3.2. Functoriality and base changes for GL(n).

3. The stable trace formula

Given an algebraic group G over F . Two elements are in the stable conjugacy class
if they are conjugate in G(F ). This is a weaker condition than conjugacy, and any
stable conjugacy class is a finite union of conjugacy classes.

Example 3.1. Let G = SL(2) and F = R, the relation(
cos θ − sin θ
sin θ cos θ

)
=

(
i 0
0 −i

)(
cos θ sin θ
− sin θ cos θ

)(
−i 0
0 i

)
represents conjugacy over G(C) of non-conjugate elements in G(R).
3.0.1. Why stabilization? One of the most important application of trace formulas is
to study the Langlands functoriality: we transfer test functions, conjugacy classes, and
representations from one group to another. If the orbital integrals coincide under this
transformation, then the transformation of representations is the desired functoriality
correspondence. Known examples include the Jacquet-Langlands correspondence. Let
me explain some difficulities in the transformation and explain why we need to stabilize
the trace formula.

• Geometric side: transfer conjugacy classes. Conjugacy class for GLN can be ex-
pressed in terms of their characteristic polynomials. We can define the transfer
of a conjugacy by determining its characteristic polynomial. However, charac-
teristic polynomials only distinguish stable conjugacy.

• Spectral side: L-packets. Lnaglands correspondence associates L-packets to L-
parameters. The functoriality is only a correspondence of L-packets. Therefore,
we need a formula that studies the trace of representations in L-packets. The
characters over L-packets are expected to be stable characters.

Here is an example. Recall that a semisimple Lie group G(R) has a discrete
series if and only if it has a compact Cartan subgroup. More generally, a
reductive Lie group G(R) has a discrete series if and only if G-has an elliptic
torus TG over R. any strongly regular elements elliptic conjugacy class for G(R)
intersects TG,reg. Two elements in TG,reg are G(R)-conjugate if and only if they
lie in the same WR-orbit.

Let µ be a character of Z(g), there are exactly |WC/WR|-discrete series repre-
sentations with infinitesimal character µ. Their characters can be written as a
distribution on TR (in fact a function on TG,res by Harish-Chardra’s theorem).
The explicit formula is given in [Sch1], they are sums over WR, so is (only)
G(R)-invariant. However, the sums of characters in an L-packets of discrete
series is a sum over WC-orbits, so is a stable character.
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3.1. Local stabilization. The field will be local in this subsection unless otherwise
stated. We need to study local functoriality.

3.1.1. Some formal settings. A special case is the the theory of endoscopy. Let G′

be an endoscopic group for G. We need to find a characterization of the image of
the functorial correspondence π′ → π, π′ ∈ Π(G′). The functorial correspondence of
representations is dual to a transfer of functions. So we required to study the transfer
of functions from G(F ) to G(F ′).

The transfer of functions is based on harmonic analysis. Its domain is the space of
test functions on G(F ). We take the Hecke algebra H(G), a convolution algebra that
equals C∞

c (G) if F is archimedean, but that is the proper subalgebra of functions f ∈
C∞
c (G) that satisfy a supplementary finiteness condition under left and right translation

of f by elements in a fixed maximal compact subgroup, if F is archimedean.(need to
modify, define it earlier.)

An element γ ∈ G(F ) is called strongly regular if its centralizer Gγ is a maximal
torus in G. For any such γ, we have the associated invariant orbital integral

fG(γ) = |D(γ)|1/2
∫
Gγ(F )\G(F )

f(x−1γx)dx

for any test function f ∈ H(G), where dx is a fixed right invariant measure. We
normalize fG(γ) by the Weyl discriminant

D(γ) = det((1−Ad(γ))g/gγ ).

We write I(G) = {fG : f ∈ H(G)} for the image of H(G) under this transform.
The functions in I(G) also have a spectral interpretation. Any representation π ∈

Π(G) has a chaaracter, which can be identified with the linear form

tr(π(f)) = tr

(∫
G(F )

f(x)π(x)dx

)
, f ∈ H(G),

on H(G). We set fG(πtr(π(f)). It can be shown that either of the two functions
{fG(γ)} and {fG(π)} attached to f determines the other. We can therefore regard any
element fG in I(G) as a function of either γ or π. It is invariant in the sense that it
depends only on the conjugacy class of γ or the equivalence class of π. It also remains
invariant if its preimage f ∈ H(G) is replaced by any conjugate fy(c) = f(ycy−1).

In summary, orbital integral and trace, the two sides of the trace formula, are two
transformations from H(G) to invariant functions. The fact that the spaces are the
same indicates that the conjugacy class is dual to representations.

Two strongly regular elements in G(F ) are said to be stably conjugate if they are
conjugate as elements in the group G(F ). For the local field F , there are only finitely
many G(F )-conjugacy classes γ in any (strongly regular) stable conjugacy class δ. The
corresponding sum

fG(δ) =
∑
γ

fG(γ), f ∈ H(G)

of orbital integrals is called the stable orbital integral of the given function f at δ.
We write S = fG : f ∈ H(G) for the space of functions of δ obtained in this way.
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As we shall see, L-packets arise when we try to find a spectral interpretation for the
functions fG in S(G) analogous to the values fG(π) of functions fG in I(G). In general,
a distribution S on G(F ) is said to be stable if its value at any f depends on gG. If this

is so, the distribution S descends to a linear form Ŝ on S(G): Ŝ(fG) = S(f), f ∈ H(G).
The spectral question is then to attach stable distributions to representations π.

3.1.2. Transfer and the fundamental lemma. Suppose that G′ is an endoscopic datum
for G. Langlands and Shelstad define a strongly regular element δ′ ∈ G′(F ) to be
strongly G-regular if its image in G(F ) is strongly regular for G. The space of strongly
G-regular elements remains open and dense in G′(F ). They introduced an explicit
function ∆(δ′, γ) of strongly stable conjugacy classe which they called a transfer factor
for G and G′. By construction, this function vanishes unless γ belongs to the stable
conjugacy class of the image of δ′ in G′(F ). It therefore has finite support in either
of the variables when the complementary variable is fixed. The role of ∆(δ′, γ) is as
the kernel function for the transfer mapping that sends a function f ∈ H(G) to the
function

f ′(δ′) = f δ
′

∆ =
∑
γ

∆(δ′, γ)fG(γ)

of δ′. Langlands and Shelstad conjectured that the function f ′(δ′) belongs to the space
S(G′).

The Langlands-Shelstad transfer conjecture is true for archimedean F . For nonar-
chimedean F , it is closed tie to the fundamental lemma. LetG andG′ be two unramified
group. Then G(F ) has a hyperspecial maximal compact subgroup KF , which is deter-
mined uniquely up to the appropriate analogue of stable conjugacy. The fundamental
lemma asserts that if f is the characteristic function of KF , then f

′ equals the image in
S ′(G′) of the characteristic function of any hyperspepcial maximal compact subgroup
K ′
F of G′(F ). The fundamental lemma is thus a more precise version of the transfer

conjecture in a special case. This is now a theorem by Ngô.

3.1.3. Local spectral transfer. The Langlands-Shelstad transfer is a transfer based on
conjugacy classes. We also define a spectral transfer.

3.2. The global stabilization.

3.2.1. The problem of stabilization. Remember that we want to find stably invariant
distributions. We may, of course, sum over the conjugacy classes in the same stable
conjugacy class to make an invariant distribution stable since there are only finitely
many conjugacy classes in a stable conjugacy class. This is what we have done for local
fields.

Could we do the same thing for a global field to get something stable? The analysis
of global fields is the analysis of functions over the locally compact group G(AF ). Let

Ireg,ell(f) =
∑

γ∈Γreg,ell

aG(γ)fG(γ)

where aG(γ) = vol(Gγ(Q)\Gγ(A)1), fG is the orbital integral distribution. We might
hope that the distribution Ireg,ell is stable since we have sum over stable conjugacy
classes. However, this not the correct. the stable distribution should be the tensor
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product of local stable distributions {fGv (δv)}. However, there are not enough rational
conjugacy classes to cover the tensor products of local rational conjugacy classes.

Now F is global. Even if we sum over stable conjugacy classes, the orbital integral
is still not invariant under G(A). So we need some stabilization.

Let γ ∈ G(F ) be a semi-simple element, and let Gγ be its centralizer. If γ′ =

g−1γγ(g ∈ G(F )) is in a stable conjugacy class. Let σ ∈ ΓF = Gal(F/F ), the map
σ 7→ gσ−1 defines a one-cocycle in H1(Gal(F/F ), Gγ(F )). The set of conjugacy classes

is parameterized by the abelian group H1(Gal(F/F ), Gγ(F )).
However, each G(A)-conjugacy class in the G(A)-stable conjugacy class does not

necessarily have a representative in G(F ). The failure can be measured using class
field theory

coker1(F, T ) = coker(H1(F, T ) →
⊕
v

H1(Fv, T )).

So we need to add error terms coming from this.

Ireg,ell(f) =
∑

δ∈∆reg,ell(G)

aG(δ)ι(T )
∑
κ∈T̂Γ

fκG(δ),

3.2.2. Endoscopic datum. Surprisingly, the error terms have a group theoretical inter-
pretation. This is the endoscopic datum. Let G be an algebraic group, an endoscopic
datum for G is defined to be a triplet (G′,G′, s′, ξ′), where G′ is a quasi-split group over

F , G′ is a split extension of WF by a dual group Ĝ′ of G′, s′ is a semisimple element in
Ĝ, and ξ′ is an L-embedding of G′ into LG. It is required that ξ′(Ĝ′) be equal to the

connected centralizer of s′ in Ĝ, and that

ξ′(u′)s′ = s′ξ′(u′)a(u′)

where a is a 1-cocycle from WF to Z(Ĝ) that is locally trivial. We say that (G′G′, s′ξ′)
is elliptic if Z(ξ′)0 = 1. The isomorphisms between endoscopic data are defined. This
means that the image of ξ′ in LG is not contained in LM for any proper Levi subgroup
of G over F . We weite Eell(G) for the set of isomorphism classes of elliptic endoscopic
data for G.

The construction:

Example 3.2. Suppose that G = GL(2) and that s′ is the image of

(
1 0
0 −1

)
in

Ĝ = PGL(2,C). Then Ĝs′,+ consists of the group of diagonal matrices, together with

a second component generated by the element

(
0 1
1 0

)
. Since the center of Ĝs′,+ equals

{1, s′}, we obtain elliptic endoscopic data for G by choosing nontrivial homomorphisms

from GalF to the group π0(Ĝs′,+) ∼= Z/2Z. The classes in Eell other than G itself, are
thus parameterized by quadratic extensions E of F .

So we finally get Langlands’ stabilization

Ireg,ell(f) =
∑

G′∈Eell(G)

ι(G,G′)Ŝ′
Greg,ell

(f ′)
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3.3. The stable trace formula. The stable invariant distribution should be a linear
combination of invariant distributions.

Theorem 3.3 (Endoscopic trace formula). th

IGdisc(f) = SG(f) +
∑

SH(fH).

4. Arthur’s classification

One application of trace formula is Arthur classification of automorphic forms of
quasi-split special orthogonal and symplectic group. I will just give a sketch. The
references are [Art1] and [Art3]. They are both summaries of [Art5]. We assume the
results for GL(n) are already known. Orthogonal groups and symplectic groups are
considered as endoscopic groups of GL(N). In this section, G is a quasisplit orthogonal
or symplectic group.

Remark 4.1. The endoscopic classification of unitary groups is already done in [Mok]
for quasi-split unitary groups, and in [KWSW] for inner forms of unitary groups.

4.1. Statement of results.

4.1.1. Local results. Assume F is a local field. We have the local Langlands group LF .
The group G somes with the family Φ(G) of (conjugace classes of) Langlands parame-
ters, and the family Π(G) of (equivalence classes) irreducible admissible representations

of G(F ). Here we actually take a quotient of these objects. Φ̃(G) is the same as Φ(G)
for types Bn and Cn, but is the set of O(2n,C)/SO(n,C)-orbits in Φ(G) under the

action of O(2n,C) by conjugation on LG. Π̃(G) is the sames as Π(G) for types Bn and
Cn, but is the set of O(2n, F )/SO(2n, F ) orbits in Π(G) under the action of O(2n, F )
by conjugation on G(F ).

We have a chain

Π̃(G)tempG) ⊂ Π̃unit(G) ⊂ Π̃(G),

we also define a chain

Φ̃bdd(G) ⊂ Ψ̃(G) ⊂ Φ̃(G)

defined by certain bounded conditions.
For any ψ ∈ Ψ̃(G), we have the centralizer Sψ in Ĝ of the image of ψ. Let Sψ =

Sψ/Z(Ĝ)
GalF . The group Sψ = π0((Sψ)) is a finite abelian 2-group.

Roughly speaking, the classification theorem asserts that we may associate a packet
π̃ψ over Π̃unit(G) to a parameter ψ ∈ Ψ̃(G). The packet π̃ψ is parameterized by
characters of Sψ. If ψ is bounded, the packets can be regarded as a packet of tempered

representations. These tempered representations exhausts the set Π̃temp(G). For the
accurate statement, see [Art1].
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4.1.2. Global results. Now F is a global field. Assuming the existence of the global
Langlands group LF , we define the global parameter sets Φ̃bdd(G), Ψ̃(G) and Φ̃(G) as

in the local case. To a parameter ψ ∈ Ψ̃(G), we also have the centralizer Sψ and the
associated 2-group Sψ. For any v, we have the localization mapping x → xv from Sψ
to Sψv . The global packet is defined as

Π̃ψ = {π =
⊗

πv : πv ∈ Π̃ψv , ⟨·, πv⟩ = 1 for almost allv}.

The main global theorem is a decomposition of the automorphic discrete spectrum

L2
disc(G(F )\G(A)) ⊂ L2(G(F )\G(A)).

The space L2
disc(G(F )\G(A)) is a Hecke algebra module. We need to consider a slightly

smaller Hecke algebra H̃(G) as we only consider orbits of representations for type Dn.
The accurate statement and the explanations of symbols can be find in [Art1].

4.2. The idea of classification. we sketch the procedure of Arthur classification. The
basic idea is endoscopy. We already know that the L-group of G can be canonically
embedded as a subgroup of the L-group of GL(N). We already know the Langlands
correspondence of GL(N). If the L-parameter factors through a subgroup associated
with G, it should corresponds a L-packet of representations of G by Langlands functo-
riality. Such parameters are called the Arthur parameter.

4.2.1. Self-dual representations and endoscopic subgroups. Let G̃ = GL(N) over F ,
equipped with the outer automorphism α : x 7→ x∨ :=t x−1. The corresponding

complex dual ˆ̃G = GL(N,C) comes with the dual outer automorphism α̂ : g → g∨.
Assuming the existence of the global langlands group LF , we consider the self-dual

α̂-stable and α̂-discrete continuous homomorphisms

ψ : LF × SL(2,C) → ˆ̃G = GL(n,C).
By definition,

ψ = ψ1 ⊕ · · · ⊕ ψr,

for distinct irreducible representations

ψi : LF × SL(2,C) → GL(Ni,C),
such that ψi is equivalent to ψ∨

j . ψ is called elliptic if ψ∨
i = ψi for each i. From now

on, we always assume that ψ is elliptic. Then ψi is either symplectic or orthogogal,
which means that its image is contained in the subgroup Sp(Ni,C) or O(Ni,C), up to
conjugacy.

Writing ψi = µi ⊗ νi for irreducible representations µi : LF → GL(mi,C) and
νi : SL(2,C) → GL(ni,C) such that Ni = mini. Then for any i, µi is equivalent to
µi⊗χ. νi is symplectic or orthogonal according to whether it is even or odd dimensional.
ψi is symplectic if and only if one of µi and νi is symplectic, another is orthogonal. ψi
is orthogonal if both are orthogonal or symplectic.

Collecting all orthogonal and symplectic factors together, we see that the image of
ψ is in a subgroup O(NO,C)×Sp(NS ,C) ⊂ GL(N,C). Therefore, the elliptic self-dual
representation factors through the embedding subgroup

LGE/F =L (GO ×GS)E/F
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of SL(N,C) attached to the quasisplit group

G = GO ×GS

over F . The group G is called a twisted endoscopic group for GL(N). From Langlands
functoriality, this parameter should determine a packet of automorphic representations
of G. In particular, if G is just a orthogonal or symplectic group, we should get
automorphic representations of G.

4.2.2. Arthur parameter. The existence of LF is only hypothetical now. Even if it does
exist, an explicit description of representations ψ is useful. The main hypothetical
property of LF is that its irreducible unitary representations of dimension mi should
be in canonical bijection with the unitary cuspidal representations of GL(m). So we
could have a representation theoretical interpretation of ψ.

A unitary cuspidal automorphic representation µ of GL(m) is called χ-self-dual if
the representation x → µ(x∨) is equivalent to µ. These are exactly automorphic rep-
resentations associated with self-dual L-parameters. We also need to define what is an
orthogonal or symplectic automorphic representation. In general, this must be done
in terms of whether a certain automorphic L-function for µ has a pole at s = 1. See
[Art1], Theorem 3.

4.3. An example: GSp(4). A slightly different example is GSp(4) ([Art2]). The
abstract classification theorem becomes explicit in this simple case. The classification
is parallel to the classification theorem above. I will just say something that is particular
for GSp(4).

Since we are considering GSp(4), we need a more complex torus factor. So let

G̃ = GL(N)×GL(1) over F , equipped with the outer automorphism

α : (x, y) 7→ (x∨, det(x)y)

The corresponding complex dual ˆ̃G = GL(N,C) × C∗ comes with the dual outer
automorphism

α̂ : (g, z) → (g∨z, z).

The self-dual α̂-stable and α̂-discrete continuous homomorphisms are then

ψ̃ = ψ ⊕ χ : LF × SL(2,C) → ˆ̃G = GL(n,C)× C∗.

By definition,

ψ = ψ1 ⊕ · · · ⊕ ψr,

for distinct irreducible representations

ψi : LF × SL(2,C) → GL(Ni,C).

We assume ψ̃ is elliptic so that ψi is equivalent to ψ
∨
i ⊗χ. Then ψi is either symplectic

or orthogogal, which means that its image is contained in the subgroup GSp(Ni,C)
or GO(Ni,C), up to conjugacy. Writing ψi = µi ⊗ νi for irreducible representations
µi : LF → GL(mi,C) and νi : SL(2,C) → GL(ni,C) such that Ni = mini. Then for
any i, µi is equivalent to µi⊗χ. νi is symplectic or orthogonal according to whether it
is even or odd dimensional. ψi is symplectic if and only if one of µi and νi is symplectic,
another is orthogonal. ψi is orthogonal if both are orthogonal or symplectic.
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Ĝ = {(g+, g−, z) ∈ Ĝ+ × Ĝ− × C∗ : λ(g+) = Λ(g−) = z}
determines

The image is again contained in the subgroup

Ĝ = {(g+, g−, z) ∈ GO(N+,C)×GSp(N−,C)× C∗ : λ(g+) = Λ(g−) = z}
of a direct product of GO(N+,C) and GSp(N−,C). These generalized orthogonal or
symplectic groups are dual groups of some quais-split groups G+ and G−. Then the

subgroup Ĝ is the L-group of a quotient group G of G+ × G−, called an endoscopic
group.

If we assume that N is even, then G is isomorphic to the general spin group
GSpin(N + 1) = (Spin(N + 1) × C∗)/{±1} over F . If N = 4, there is an excep-
tional isomorphism between GSpin(5) and GSp(4). This is why we could study the
automorphic representations of GSp(4).

The existence of LF is only hypothetical now. Even if it does exist, an explicit
description of representations ψ is useful. The main hypothetical property of LF is
that its irreducible unitary representations of dimension mi should be in canonical
bijection with the unitary cuspidal representations of GL(m). So we could have a

representation theoretical interpretation of ψ̃.
A unitary cuspidal automorphic representation µ of GL(m) is called χ-self-dual if

the representation

x→ µ(x∨)χ(detx)

is equivalent to µ. We also need to define what is an orthogonal or symplectic auto-
morphic representation. In general, this must be done in terms of whether a certain
automorphic L-function for µ has a pole at s = 1. If m = 2 or 4, we have explicit
descriptions ([Art4]).

Let G = GSpin(N + 1). Define the Arthur packet Ψ2(G,χ) to be the set of formal
(unordered) sums

ψ = ψ1 ⊞ · · ·⊞ ψr

of distinct, formal, χ-self dual tensor products

ψi = µi ⊠ νi, 1 ≤ i ≤ r,

of symplectic type. More precisely, νi is an irreducible representation of SL(2,C) of
dimension mi, and µi is a χ-self dual, unitary, cuspidal automorphic representation of
GL(mi) that is of symplectic type if ni is odd and orthogonal type if ni is even,, for
integers mi and ni such that

N = N1 + · · ·+Nr = m1n1 + · · ·+mrnr.

The correspondence should be that these Arthur packets has a natural correspon-
dence with automorphic representations. A character of ΓF is equivalent to a Grossen-
character by class field theory. Π2(G,χ) corresponds to Ψ2(G,χ), the unitary cuspidal
automorphic representations in L2

disc(G(F)\G(A), χ).
The explicit classification of GSp(4) is as follows:

(1), General type.

ψ = ψ1 = µ⊠ 1.
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(2). Yoshida type.
ψ = ψ1 ⊞ ψ2 = (µ1 ⊠ 1)⊞ (µ2 ⊠ 1).

(3). Soudry type.
ψ = ψ1 = µ⊠ ν(2).

(4). Saito-Kurakawa type

ψ = ψ1 ⊞ ψ2 = (λ1 ⊠ ν(2))⊞ (µ⊞ 1).

(5). Howe-Piatetski-Shapiro type

ψ = ψ1 ⊞ ψ2 = (λ1 ⊠ ν(2))⊞ (λ2 ⊠ ν(2)).

(6). One-dimensional type

ψ = ψ1 = λ⊠ ν(4).
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