Hodge Classes in the Cohomology of Local Systems

Xiaojiang Cheng

Washington University in St. Louis

December 7, 2023

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Introduction

- 2 Cohomology Theories
- 3 Cohomological Representations
- 4 Saito-Kurokawa Liftings
- 5 Geometric Applications

∃ →

Conjecture (Hodge conjecture)

Let X be a non-singular complex projective manifold. Then every Hodge class on X is a linear combination with rational coefficients of the cohomology classes of complex subvarieties of X.

The codimension-1 case is the Lefschetz theorem on (1, 1) classes. This (and its dual) is the only known case in general.

- Inspired by Lefschetz's original approach, Griffiths-Green program studies normal functions arising from fibering a Hodge class out over a base. In particular, they study the singularities of (admissible) normal functions.
- Voison pointed out that one could break the Hodge conjecture into a question about the absoluteness of Hodge classes and the Hodge conjecture for varieties defined over $\overline{\mathbb{Q}}$.

The Hodge conjecture holds for

- (Mattuck) a general abelian variety,
- (Tate) an abelian variety A which is isogenous to a product of elliptic curves,
- (Tankeev) a simple abelian variety X whose dimension is a prime number,
- (Schoen) four-dimensional abelian variety of Weil type with $K = \mathbb{Q}(\mu_3)$ or $\mathbb{Q}(\sqrt{-1})$.

Theorem (Deligne)

Let A be an abelian variety over an algebraically closed field k, then every Hodge class is an absolute Hodge class.

- Special varieties: hypersurfaces of degree one and two, (Zucker) cubic fourfolds, (Murre) unirational fourfolds, intersections of low degree hypersurfaces; (Shioda) certain Fermat varieties.
- Families of varieties: (D.Arapura) universal curves of stable genus two curves.
- Locally symmetric varieties: (Bergeron, Millson, Moeglin, Zhiyuan Li) arithmetic ball quotients, arithmetic manifolds of orthogonal type, moduli space of quasi-polarized K3 surfaces.

We are mainly interested in families of varieties.

Decomposition Theorem

Let X be a complex projective manifold. To any pair (U, L) where $j: U \to X$ is a Zariski open subset of X and L a local system over U, we can canonically define a perverse sheaf *intersection complex* $IC_U(L)$. The decomposition theorem studies the topological properties of proper maps between algebraic varieties.

Theorem (Decomposition theorem)

Let $f : Y \to X$ be a proper map of complex algebraic varieties. There exists an isomorphism in the constructible bounded derived category \mathcal{D}_X :

$$Rf_*IC_Y \cong \bigoplus_i {}^{\mathfrak{p}}\mathcal{H}^i(Rf_*IC_Y)[-i].$$

Furthermore, the perverse sheaves ${}^{\mathfrak{p}}\mathcal{H}^{i}(Rf_{*}IC_{Y})$ are semisimple; i.e.,

$${}^{\mathfrak{p}}\mathcal{H}^{i}(Rf_{*}IC_{Y})\cong \bigoplus_{\alpha}IC_{\overline{X_{\alpha}}}(L_{\alpha}).$$

Decomposition Theorem

Taking hypercohomology of the decomposition theorem, we get:

Theorem (Decomposition theorem)

Let $f : Y \to X$ be a proper map of varieties. There exists finitely many triples $(X_{\alpha}, L_{\alpha}, d_{\alpha})$ made of locally closed, smooth and irreducible algebraic subvarieties $X_{\alpha} \subset X$, semisimple local systems L_{α} on X_{α} and integer numbers d_{α} , such that for every open set $U \subset X$ there is an isomorphism

$$IH^r(f^{-1}U) \cong \bigoplus_{\alpha} IH^{r-d_{\alpha}}(U \cap \overline{X}_{\alpha}, L_{\alpha}).$$

 α

Remark

The decomposition is not uniquely defined. But in the case when X is quasi-projective, one can make distinguished choices that realize the summands as mixed Hodge substructures of a canonical mixed Hodge structure on $IH^*(Y)$.

Zucker's Conjecture

Let G be a semisimple algebraic group defined over \mathbb{Q} of Hermitian type with the associated Hermitian symmetric domain $D = G(\mathbb{R})/K$. Let Γ be an arithmetic subgroup of G and let $X := \Gamma \setminus D = \Gamma \setminus G(\mathbb{R}) / K$ be a locally symmetric variety. Then X is a quasi-projective variety with Baily-Borel compactification \overline{X} . Denote by $i: X \to \overline{X}$ the natural inclusion map. Let (V, ρ) be a (rational) representation of G, it defines a local system \mathbb{V} over X. We are interested in the intersection cohomology $IH^*(\overline{X}, \mathbb{V})$.

he usual exterior differential.

A D > A B > A B > A B

Zucker's Conjecture

Let G be a semisimple algebraic group defined over \mathbb{Q} of Hermitian type with the associated Hermitian symmetric domain $D = G(\mathbb{R})/K$. Let Γ be an arithmetic subgroup of G and let $X := \Gamma \setminus D = \Gamma \setminus G(\mathbb{R}) / K$ be a locally symmetric variety. Then X is a quasi-projective variety with Baily-Borel compactification \overline{X} . Denote by $i: X \to \overline{X}$ the natural inclusion map. Let (V, ρ) be a (rational) representation of G, it defines a local system \mathbb{V} over X. We are interested in the intersection cohomology $IH^*(\overline{X}, \mathbb{V})$. The Hermitian symmetric domain D is equipped with a canonical Riemannian metric induced from the Killing form of the Lie algebra g. This metric is Γ -invariant, thus descends to a Riemannian metric over $X = \Gamma \setminus D$. We also choose and fix a metric on the local system \mathbb{V} . The L^2 -cohomology groups $H^*_{(2)}(X, \mathbb{V})$ are defined to be the cohomology groups of the complex (C^{\bullet}, d) , where C^k is the space of \mathbb{V} -valued smooth k-forms over X such that the form itself and its exterior derivative are both square-integrable; the differential map d is simply the restriction of the usual exterior differential.

Zucker's conjecture compares the intersection cohomology over \overline{X} and L^2 -cohomology over X. It was proved in different ways by Eduard Looijenga and by Leslie Saper and Mark Stern.

Theorem (Zucker's conjecture)

As real vector spaces, the intersection cohomology $H^*(\overline{X}, \mathbb{V}_{\mathbb{R}})$ is isomorphic to the L²-cohomology $H^*_{(2)}(X, \mathbb{V}_{\mathbb{R}})$.

Remark

It is natural to ask whether Zucker's conjecture is an isomorphism of Hodge structures. This is an open question.

Let G be a reductive Lie group with complexified Lie algebra g. Fix a maximal compact subgroup K, let U be a (\mathfrak{g}, K) -module. The relative Lie algebra cohomology $H^*(\mathfrak{g}, \mathfrak{k}, U)$ is defined to be the cohomology of the complex (C^{\bullet}, d) where $C^k = \operatorname{Hom}(\wedge^k(\mathfrak{g}/\mathfrak{k}), U)$. The differential map d is defined as in differential geometry as we can regard elements in Lie algebras as invariant tangent vectors.

Let V be a finite dimensional representation, a (\mathfrak{g}, K) -module U is called cohomological with respect to V if $H^*(\mathfrak{g}, K.U \otimes V) \neq 0$.

The L^2 -cohomology groups can be interpreted as relative Lie algebra cohomology groups:

$$H^*_{(2)}(X,\mathbb{V})\cong H^*(\mathfrak{g},K,L^2(\Gamma\backslash G(\mathbb{R}))^\infty\otimes V).$$

the L^2 -cohomology groups remain unchanged if we replace $L^2(\Gamma \setminus G(\mathbb{R}))^{\infty}$ with $\mathcal{A}^2(G; \Gamma)$, the subspace of L^2 -automorphic forms:

$$I\!H^*(\overline{X},\mathbb{V})=H^*(\mathfrak{g},K,\mathcal{A}^2(G;\Gamma)\otimes V)=\bigoplus_{U_\pi\in\mathcal{A}^2(G;\Gamma)}m_\pi(\Gamma)H^*(\mathfrak{g},K,U_\pi\otimes V).$$

If \mathbb{V} comes from geometry, $IH^*(\overline{X}, \mathbb{V})$ is a Hodge structure. We are interested in the possible realizations of local systems as variations of Hodge structures over a locally symmetric variety. Griffiths-Green-Kerr developed the theory of *Hodge representations* to solve this problem.

If *D* is Hermitian, the relative Lie algebra cohomology $H^*(\mathfrak{g}, K, U_{\pi} \otimes V)$ has a natural bigrading. To make it compatible with the Hodge structure on the intersection cohomology, we need to do a slightly modification

D.Vogan and G.Zuckerman classified the cohomological representations in terms of θ -stable parabolic subalgebras. Roughly speaking, cohomological representations should have a minimal *K*-representation with respect to a Weyl chamber.

Example

Discrete series representations are cohomological.

Example

If ${\cal V}$ is regular, the only cohomological representations are discrete series representations.

Example $(SL_2(\mathbb{R}))$

- Discrete series representations are cohomological;
- Principal series representations are not cohomological.

- For *SU*(2,1) or *SU*(3,1), no cohomological representations contributes to Hodge classes.
- For Sp(4), we are intersested in a non-tempered cohomological representation σ_{k+3}. It produces Hodge classes in H¹(Γ\𝔅₂, 𝒱^{k,k})

Question

How to find the multiplicities of σ_{k+3} in $\mathcal{A}^2(\Gamma \setminus \mathfrak{H}_2)$?

Automorphic representations.

- For *SU*(2,1) or *SU*(3,1), no cohomological representations contributes to Hodge classes.
- For Sp(4), we are intersested in a non-tempered cohomological representation σ_{k+3}. It produces Hodge classes in H¹(Γ\𝔅₂, 𝒱^{k,k})

Question

How to find the multiplicities of σ_{k+3} in $\mathcal{A}^2(\Gamma \setminus \mathfrak{H}_2)$?

Automorphic representations.

Arthur classified automorphic representations of GSp(4) in terms of *A*-packets. There are six types of automorphic representations:

- General type;
- Yoshida type;
- Soudry type;
- Saito-Kurokawa type;
- Howe-Piatetski-Shapiro type;
- one dimensional type.

The representations σ_k are the archimedean components of automorphic representations of the Saito-Kurokawa type.

We can determine the multiplicity of σ_k for parampdular subgroups of prime level.

Proposition

Let $\Gamma = \Gamma^{\text{para}}(p)$ be a paramodular subgroup of prime level, then the multiplicity of σ_k in $\mathcal{A}^2(\Gamma \setminus Sp(4, \mathbb{R}))$ is:

- dim $S_{2k-2}(SL(2,\mathbb{Z}))$ + dim $S_{2k-2}(\Gamma_0(p))^{new,+}$ if k is odd;
- dim $S_{2k-2}(\Gamma_0(p))^{new,-}$ if k is even.

Theorem (D. Arapura)

The Hodge conjecture holds for the universal genus 2 curve.

Theorem

The Hodge conjecture holds for the self-fiber product of the universal genus 2 curve, as well as for the universal abelian surface (and any compactification thereof), over $\Gamma^{\text{para}}(p) \setminus \mathfrak{H}_2$ when p = 1, 2, 3, 5.

Theorem

Let X be a compactification of the universal genus four Picard curve over an arithmetic quotient of \mathbb{B}^3 . Then the Hodge conjecture holds for X.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Question

For p = 7, we have a real Hodge class. Is this a rational class? If so, is there a geometric interpretation of this class?

Question

Could we study paramodular subgroups of all levels at the same time?

THANK YOU!

< □ > < 同 > < 回 > < 回 > < 回 >

æ