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Hodge Conjecture

Conjecture (Hodge conjecture)

Let X be a non-singular complex projective manifold. Then every Hodge
class on X is a linear combination with rational coefficients of the
cohomology classes of complex subvarieties of X .

The codimension-1 case is the Lefschetz theorem on (1, 1) classes. This
(and its dual) is the only known case in general.
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Some strategies

Inspired by Lefschetz’s original approach, Griffiths-Green program
studies normal functions arising from fibering a Hodge class out over
a base. In particular, they study the singularities of (admissible)
normal functions.

Voison pointed out that one could break the Hodge conjecture into a
question about the absoluteness of Hodge classes and the Hodge
conjecture for varieties defined over Q.
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Abelian Varieties

The Hodge conjecture holds for

(Mattuck) a general abelian variety,

(Tate) an abelian variety A which is isogenous to a product of elliptic
curves,

(Tankeev) a simple abelian variety X whose dimension is a prime
number,

(Schoen) four-dimensional abelian variety of Weil type with
K = Q(µ3) or Q(

√
−1).

Theorem (Deligne)

Let A be an abelian variety over an algebraically closed field k, then every
Hodge class is an absolute Hodge class.
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Some other results

Special varieties: hypersurfaces of degree one and two, (Zucker) cubic
fourfolds, (Murre) unirational fourfolds, intersections of low degree
hypersurfaces; (Shioda) certain Fermat varieties.

Families of varieties: (D.Arapura) universal curves of stable genus two
curves.

Locally symmetric varieties: (Bergeron, Millson, Moeglin, Zhiyuan Li)
arithmetic ball quotients, arithmetic manifolds of orthogonal type,
moduli space of quasi-polarized K3 surfaces.

We are mainly interested in families of varieties.
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Decomposition Theorem

Let X be a complex projective manifold. To any pair (U, L) where
j : U → X is a Zariski open subset of X and L a local system over U, we
can canonically define a perverse sheaf intersection complex ICU(L).
The decomposition theorem studies the topological properties of proper
maps between algebraic varieties.

Theorem (Decomposition theorem)

Let f : Y → X be a proper map of complex algebraic varieties. There
exists an isomorphism in the constructible bounded derived category DX :

Rf∗ICY
∼=

⊕
i

pHi (Rf∗ICY )[−i ].

Furthermore, the perverse sheaves pHi (Rf∗ICY ) are semisimple; i.e.,

pHi (Rf∗ICY ) ∼=
⊕
α

ICXα
(Lα).
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Decomposition Theorem

Taking hypercohomology of the decomposition theorem, we get:

Theorem (Decomposition theorem)

Let f : Y → X be a proper map of varieties. There exists finitely many
triples (Xα, Lα, dα) made of locally closed, smooth and irreducible algebraic
subvarieties Xα ⊂ X , semisimple local systems Lα on Xα and integer
numbers dα, such that for every open set U ⊂ X there is an isomorphism

IH r (f −1U) ∼=
⊕
α

IH r−dα(U ∩ Xα, Lα).

Remark

The decomposition is not uniquely defined. But in the case when X is
quasi-projective, one can make distinguished choices that realize the
summands as mixed Hodge substructures of a canonical mixed Hodge
structure on IH∗(Y ).
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Zucker’s Conjecture

Let G be a semisimple algebraic group defined over Q of Hermitian type
with the associated Hermitian symmetric domain D = G (R)/K . Let Γ be
an arithmetic subgroup of G and let X := Γ\D = Γ\G (R)/K be a locally
symmetric variety. Then X is a quasi-projective variety with Baily-Borel
compactification X . Denote by i : X → X the natural inclusion map. Let
(V , ρ) be a (rational) representation of G , it defines a local system V over
X . We are interested in the intersection cohomology IH∗(X ,V).
The Hermitian symmetric domain D is equipped with a canonical
Riemannian metric induced from the Killing form of the Lie algebra g.
This metric is Γ-invariant, thus descends to a Riemannian metric over
X = Γ\D. We also choose and fix a metric on the local system V. The
L2-cohomology groups H∗

(2)(X ,V) are defined to be the cohomology

groups of the complex (C •, d), where C k is the space of V-valued smooth
k-forms over X such that the form itself and its exterior derivative are
both square-integrable; the differential map d is simply the restriction of
the usual exterior differential.
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Zucker’s conjecture

Zucker’s conjecture compares the intersection cohomology over X and
L2-cohomology over X . It was proved in different ways by Eduard
Looijenga and by Leslie Saper and Mark Stern.

Theorem (Zucker’s conjecture)

As real vector spaces, the intersection cohomology IH∗(X ,VR) is
isomorphic to the L2-cohomology H∗

(2)(X ,VR).

Remark

It is natural to ask whether Zucker’s conjecture is an isomorphism of
Hodge structures. This is an open question.
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Relative Lie algebra cohomology

Let G be a reductive Lie group with complexified Lie algebra g. Fix a
maximal compact subgroup K , let U be a (g,K )-module. The relative Lie
algebra cohomology H∗(g, k,U) is defined to be the cohomology of the
complex (C •, d) where C k = Hom(∧k(g/k),U). The differential map d is
defined as in differential geometry as we can regard elements in Lie
algebras as invariant tangent vectors.

Let V be a finite dimensional representation, a (g,K )-module U is called
cohomological with respect to V if H∗(g,K .U ⊗ V ) ̸= 0.
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Relative Lie Algebra Cohomology

The L2-cohomology groups can be interpreted as relative Lie algebra
cohomology groups:

H∗
(2)(X ,V) ∼= H∗(g,K , L2(Γ\G (R))∞ ⊗ V ).

the L2-cohomology groups remain unchanged if we replace L2(Γ\G (R))∞
with A2(G ; Γ), the subspace of L2-automorphic forms:

IH∗(X ,V) = H∗(g,K ,A2(G ; Γ)⊗V ) =
⊕

Uπ∈A2(G ;Γ)

mπ(Γ)H
∗(g,K ,Uπ⊗V ).
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Hodge representations

If V comes from geometry, IH∗(X ,V) is a Hodge structure. We are
interested in the possible realizations of local systems as variations of
Hodge structures over a locally symmetric variety. Griffiths-Green-Kerr
developed the theory of Hodge representations to solve this problem.

If D is Hermitian, the relative Lie algebra cohomology H∗(g,K ,Uπ ⊗ V )
has a natural bigrading. To make it compatible with the Hodge structure
on the intersection cohomology, we need to do a slightly modification
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Vogan-Zuckerman’s Classification

D.Vogan and G.Zuckerman classified the cohomological representations in
terms of θ-stable parabolic subalgebras. Roughly speaking, cohomological
representations should have a minimal K -representation with respect to a
Weyl chamber.
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Some examples

Example

Discrete series representations are cohomological.

Example

If V is regular, the only cohomological representations are discrete series
representations.

Example (SL2(R))
Discrete series representations are cohomological;

Principal series representations are not cohomological.
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Some calculations

For SU(2, 1) or SU(3, 1), no cohomological representations
contributes to Hodge classes.

For Sp(4), we are intersested in a non-tempered cohomological
representation σk+3. It produces Hodge classes in H1(Γ\H2,Vk,k)

Question

How to find the multiplicities of σk+3 in A2(Γ\H2)?

Automorphic representations.
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Classification of Automorphic Representations of GSp(4)

Arthur classified automorphic representations of GSp(4) in terms of
A-packets. There are six types of automorphic representations:

General type;

Yoshida type;

Soudry type;

Saito-Kurokawa type;

Howe-Piatetski-Shapiro type;

one dimensional type.

The representations σk are the archimedean components of automorphic
representations of the Saito-Kurokawa type.
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Multiplicity Formula

We can determine the multiplicity of σk for parampdular subgroups of
prime level.

Proposition

Let Γ = Γpara(p) be a paramodular subgroup of prime level, then the
multiplicity of σk in A2(Γ\Sp(4,R)) is:

dim S2k−2(SL(2,Z)) + dim S2k−2(Γ0(p))
new ,+ if k is odd;

dim S2k−2(Γ0(p))
new ,− if k is even.
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Siegel Modular threefolds

Theorem (D. Arapura)

The Hodge conjecture holds for the universal genus 2 curve.

Theorem

The Hodge conjecture holds for the self-fiber product of the universal
genus 2 curve, as well as for the universal abelian surface (and any
compactification thereof), over Γpara(p)\H2 when p = 1, 2, 3, 5.
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Ball Quotients

Theorem

Let X be a compactification of the universal genus four Picard curve over
an arithmetic quotient of B3. Then the Hodge conjecture holds for X .
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Further Questions

Question

For p = 7, we have a real Hodge class. Is this a rational class? If so, is
there a geometric interpretation of this class?

Question

Could we study paramodular subgroups of all levels at the same time?
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Thank You!

Xiaojiang Cheng (WUSTL) Hodge Classes in the Cohomology of Local Systems Dec. 7, 2023 22 / 22


	Introduction
	Cohomology Theories
	Cohomological Representations
	Saito-Kurokawa Liftings
	Geometric Applications

