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Mathematics compares the most
diverse phenomena and discovers the
secret analogies that unite them.

Joseph Fourier

The theory of automorphic forms is one of the most active areas in modern mathe-
matics. However, it is notoriously difficult for overwhelming and technical definitions
and constructions. I decided to write such a note when I was preparing my thesis.
There are, of course, a lot of excellent references. I didn’t mean to write down ev-
erything clearly. Instead, I just want to show some intuitions behind the complicated
constructions and theorems. I will try to focus on simple examples to make everything
visible. This note could be a guide for further reading, but not a rigorous reference.

The story begins with the classical modular forms. They are holomorphic functions
on the upper half-plane satisfying certain transformation formulas with respect to an
arithmetic subgroup of SL2(Z). The Fourier coefficients of modular forms have very
good arithmetic properties and have interesting applications to classical number the-
ory problems (sum of two squares theorem, quadratic forms, congruence relations, etc.
See [BGHZ], Chapter one). An infinite sequence of mutually commutative operators,
called the Hecke operators, act on the space of modular forms. L-functions are de-
fined for eigenforms in terms of their Fourier coefficients. Two important properties
of L-functions are their Euler product and functional equations. The modular forms
can also be interpreted as sections of Hodge bundles over modular curves. This mod-
uli interpretation makes it possible to regard Hecke operators as correspondences on
modular curves.

Besides the classical modular forms, there is another class of functions called the
Maass forms which share similar properties with the modular forms. To unify these
two classes of functions, we need to consider the representations SL2(BR), in particular
the regular representation L2(Γ\SL2(R)) where Γ is an arithmetic subgroup of SL2(R).
It turns out that the classical modular forms generate discrete series, depending only
on the weights of the modular forms. The Maass forms generate the principal series
representations. Therefore, we could simultaneously study modular forms of all weights.

Modern automorphic form theory interprets the classical modular forms as auto-
morphic representations. We consider the space of automorphic forms A(GL2) on
GL2(Q)\GL2(A), which is a GL2(A)-representation under right translation. Classical
modular forms then generate subrepresentations inside A(GL2). In adelic language,
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we emphasize the local properties of modular forms 1. In particular, Hecke operators
is nothing but the convolution algebra of certain functions. Another advantage is that
we could study modular forms with respect to all congruence subgroups 2.

We can easily extend the theory to general reductive algebraic groups G defined over
a global field F . For example, a Dirichlet character (or more generally, a grössencharacter)
is just an automorphic form of the group GL(1) over Q (resp. a number field F ).Then
the automorphic form theory is essentially the harmonic analysis theory over reductive
algebraic groups. An interesting problem is then to compare automorphic forms of dif-
ferent algebraic groups over various number fields, this is exactly the goal of Langlands
program.

A standard problem in number theory is to study the decomposition of primes under
field extensions. The famous Fermat’s theorem asserts that a prime p is a sum of two
squares if and only if p ≡ 1 mod 4. Let K := Q(i) and we consider the field extension
K/Q. Then the theorem describes the decomposition of all primes except the only
ramified prime p = 2: p splits completely if p ≡ 1 mod 4, while p inerts if p ≡ 3
mod 4. The decompositon behavior of a prime could be written in terms only of one
congruence relation. This is true for any abelian extensions and is thoroughly studied
in class field theory. If the field extension is not abelian, things become much more
complicated.

We could also explain this in terms of Galois representations. Given a finite field
extension K/L, any unramified prime P3 of L defines a conjugacy class, the Fronebius
element, in Gal(K/L). The the decomposition properties could be read off from the
action of the Frobenius element on various representations. More generally, a central
problem in number theory is to study the absolute Galois group GalF for a local or
global field F . The standard method to study groups is to study their representations,
i.e. Galois representations. To any Galois representation of a global field F , we may
associate a L-function. If the Galois representation is motivic, the L-function controls
the arithmetic of the corresponding variety or motive.

In the abelian case, the decomposition behavior is reflected in a Dirichlet character,
i.e., an automorphic representation of GL(1). This is because all representations of an
abelian groups is just a character. For nonabelian extensions, we need to consider rep-
resentations on higher dimensional spaces, and the properties of these representations
should be reflected in automorphic representations of GL(n) for n ≥ 2.

The Langlands program seeks to relate Galois groups in algebraic number theory to
automorphic forms and representation theory of algebraic groups over local fields and

1The Euler product of eigenforms suggests that we need to study modular forms locally. But this
is hidden if we only discuss representations of SL2(R)

2The congruence subgroups are the “real arithmetic subgroups” as a lot of arithmetic theorems only
holds for congruence subgroups, say, Selberg’s conjecture on the spectrum of the Laplacian on Γ\H

3Almost all factors of the Euler product are determined by the action of the corresponding Frobenius
elements. Note that these Frobenius elements form a dense subgroup of the absolute Galois group by
Chebotarev’s density theorem.
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adeles. It has been described by Edward Frenkel as “a kind of grand unified theory of
mathematics.” This huge bridge is so powerful that a simple known case could solve
Fermat’s Last Theorem.

Roughly speaking, the Langlands correspondence is a classification theory of au-
tomorphic representations. It asserts that (equivalent classes) Galois representations
correspond to (packets of) automorphic representations in a compatible manner. Under
this correspondence, the standard operators on the Galois representation side should
determine natural operators on the automorphic representation side. This is the Lang-
lands’ principle of functoriality.

A natural construction of Galois representation is to consider the action of GalF on
étale cohomology groups of varieties over F . In this case, the study of automorphic
representations controls the properties of the varieties.

The first section is a quick review of algebraic groups. The ultimate goal is to define
L-groups. The second section starts the discussion of automorphic forms. Two main
points are: (1). the local decompositions of automorphic representations; (2). the de-
composition of the space of automorphic forms via the Eisenstein series. The discussion
of the Langlands program in the third section begins with a brief review of class field
theory, which is the Langlands correspondence for GL(1). After the statement of the
Langlands correspondence, we briefly review known results and possible methods for
the Langlands correspondence.

1. Algebraic Groups

Let F be a field. A group scheme G over F is a contravariant functor from the
category of F -algebras to the category of groups. That is, to any F -algebra R, G(R)
(the set of R-points) has a natural group structure, and the group structures for dif-
ferent F -algebras are naturally compatible. An affine group scheme is a group scheme
representable by an F -algebra A: G(R) = HomF−alg(A,R) for all F -algebra R. An
affine algebraic group is a (smooth) affine group scheme of finite type over F . In this
case, the algebra A is finitely generated over F , or equivalently, A is isomorphic to the
quotient of some polynomial ring over F . An affine algebraic group is automatically a
linear algebraic group, i.e., an affine subgroup of GL(N) for some positive N . I will
simply call a linear algebraic group an algebraic group or even a group.

A connected algebraic group G over an algebraically closed field is called semisimple
if every smooth connected solvable normal subgroup of G is trivial. A connected
algebraic group G over an algebraically closed field is called reductive if the largest
smooth connected unipotent normal subgroup of G is trivial. A group G over an
arbitrary field F is called semisimple or reductive if the base change GF is semisimple
or reductive. We always assume that G is a reductive algebraic group over F in this
note.

An algebraic group is a combination of geometry and arithmetic. The geometry is
the same as that of classical Lie theory. The only thing we need to do is to trans-
late the analytically defined objects into algebraically defined objects. The arithmetic
properties make the theory of algebraic groups more interesting and useful.
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1.1. The geometry of algebraic groups. We assume G is defined over an alge-
braically closed field F = F in this subsection.

1.1.1. Root data. The classical Lie group structure theory is based on the root decom-
position of the Lie algebra. We can algebraically define Lie algebras and root decom-
position for algebraic groups. The Lie algebra of the algebraic group is just the tangent
space at 1 ∈ G, the elements are derivatives from the function ring to F . The Lie
bracket is defined to be the commutator of derivatives. In practice, we know that the
Lie algebra of GL(N) is gln =Mn×n, with the Lie bracket defined as [A,B] = AB−BA.
For general algebraic groups, we choose an embedding G ↪→ GLn and use the induced
Lie algebra. We have a natural adjoint action of G on g: Ad : G → Aut(g). When
G = GLn, it is the usual conjugation. For general G, just fix an embedding and
consider the restriction.

Recall that a root datum is a quadruple (X∗, X∗,Φ,Φ
∨) consisting of a pair of free

abelian groups X∗ and X∗ with a perfect pairing ⟨·, ·⟩ : X∗ ×X∗ → Z, together with
finite subsets Φ ⊂ X∗, Φ∨ ⊂ X∗ in one-to-one correspondence such that

• ⟨α, α∨⟩ = 2;
• For each α ∈ Φ, the reflection map sα defined by sα(x) = x− ⟨x, α∨⟩α induces
an automorphism of the root system. The group generated by sα is a finite
group.

We say that a root datum is reduced if Φ does not contain 2α for any α ∈ Φ.
Now let G be a connected reductive group. We may canonically associate a root

datum as follows. Let T ≤ G be a split maximal torus. We consider the adjoint action
of T on g and get a root system Φ(G,T ) = (Φ, V ). The elements in Φ are the roots
α ∈ X∗(T ) (the group of characters of T ) and V = ⟨Φ⟩ ⊗Z R. We may also define
the duals α∨ ∈ Φ∨ ⊂ X∗(T ) (the group of cocharacters of T ) and construct the dual
root system (Φ∨, V ∨). The quadruple Ψ(G,T ) := (X∗(T ), X∗(T ),Φ,Φ

∨) is then a root
datum.

It turns out that the root datum determines the reductive group.4:

Theorem 1.1 (Chevalley-Demazure). If F = F , then the map from the isomorphism
classes of connected reductive groups over F and the isomorphism classes of reduced
root data given by mapping G to Ψ(G,T ) := (X∗(T ), X∗(T ),Φ,Φ

∨) is a bijection.

Remark 1.1. The root datum of a reductive algebraic group G depends on the choice
of a maximal torus T . However, any two maximal tori are conjugate to each other.
Therefore, the (isomorphic class of the) root datum is independent of the choice of T .

why we need root datum?

1.1.2. Automorphisms of algebraic groups. There are natural automorphisms called
inner automorphisms which are simply defined as conjugacy by elements of G(F ).
Inn(G), the group of inner automorphisms, is isomorphic to G/Z(G). Inn(GF ) is a nor-
mal subgroup of Aut(GF ). The quotient group Aut(GF )/Inn(GF ) is called the group
of outer automorphisms. Inner automorphisms do not change the root system and the
group of outer automorphisms can be identified with the group of automorphisms of

4Note that root system is not enough to determine complex Lie groups: at least we may quotient
by a finite group without changing the root system
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the associated Dynkin diagrams D. There is a perfect theory on the classification of
Dynkin diagrams, and their automorphism groups are well known. In summary, we
have the following short exact sequence:

(1) 1→ Inn(GF )→ Aut(GF )→ Aut(D)→ 1

1.2. Forms of algebraic groups and Galois descent. Now let G be a general field
and let G be an algebraic group over F . An algebraic group H defined over F is
called an F -form of G if there exists an isomorphism ϕ between G and H over F , i.e.,
ϕ : GF

∼= HF . We want to classify all F -forms of G (up to canonical isomorphisms, of
course).

An element ϕ ∈ Aut(GF ) is uniquely determined by its action on GF (F ). The

natural action of GalF := Gal(F/F ) on Aut(GF ) is given by the formula ψσ(g) =

σψσ−1(g) for σ ∈ GalF , ψ ∈ Aut(GF ) and g ∈ GF (F ). With this Galois action, ee
can define the cohomology set H1(GalF ,Aut(GF )). This is only a set as Aut(GF ) is
non-abelian. Now given an F -form H with an isomorphism ϕ : GF → HF , the map
sending σ ∈ GalF to the automorphism ϕ−1◦ϕσ = ϕ−1◦σ◦ϕ◦σ−1 (the difference of the
Galois actions on the two groups) defines a 1-cocycle of GalF with values in Aut(GF ).
This map descends to a parameterization of the F -forms of G.

Proposition 1.2. The F -forms of G are parameterized by the cohomology set H1(GalF ,Aut(GF )).
The neutral element corresponds to an F -form isomorphic to G over F .

An inner form of G is an F -form H whose associated group cohomology element
lies in H1(GalF , Inn(GF )). The inner form defines an equivalence relation on the set
of F -forms of G. From the long exact sequence associated with (1), we know that two
F -forms are inner forms of each other if and only if the associated cocycle acts trivially
on the Dynkin diagrams.

1.2.1. Galois descent. We give a formal derivation of the classification theorem. The
reference is [GW] or [Wat].

We first consider faithfully flat descent. Let S′ → S be a quasi-compact faithfully
flat scheme, we need to study when an object X ′ over S′ is the base change of an
object X over S. Under certain mild conditions, this happens if and only if there is
an isomorphism φ over the two base-changes to S

′′
= S′ × S′, and the isomorphism

φ satisfies a cocycle condition when we consider its base-changes to S′ × S′ × S′. An
example is just the gluing of schemes, morphisms, and sheaves over Zariski open sets.

Galois descent is a special case of faithfully flat descent. Let K/F be a finite Galois
field extension with Galois group GalK/F . Then GalK/F has an action on objects over
K. The descent data can be expressed in terms of the Galois group GalK/F . And the
Galois descent asserts that GalK/F -equivariant objects over K are the same thing as
objects over F . In particular, GalK/F -invariant K-vectors spaces are F -vector spaces.

Let G be an algebraic group over F . We assume the F -form H is isomorphic to G
over some finite Galois field K. This means that we want to study the descent data of
GK . The original form G-defines a descent data, and all other data can be obtained
from an automorphism of GK×K with cocycle conditions. So we may write descent
data in terms of group cohomology. The Galois cohomology set is just the descent data
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associated with the F -form H: the family of Aut(G) is a homomorphism, the cocycle
condition is the GalK/F -equivariant condition, elements in the coboundary determines
the isomorphic F -forms. Taking a limit over K, we get the classification theorem.

Remark 1.2. Galois descent could also be considered a special case of descent along
torsors. Let K/F be a finite Galois field extension with Galois group GalK/F . Then K
is a GalK/F -torsor over F . The descent along torsors says that G-equivariant objects
along a torsor are the same thing as objects over the base scheme.

1.3. Rationality.

1.3.1. The hierarchy of forms. We say that G is split if G contains a maximal torus
that is split. Of course, G is split if G is defined over an algebraically closed field, and
GK is always split for some field extension K/F . We call G is quasisplit if G contains
a Borel subgroup B over F . A quasi-split group is determined by a homomorphism
from the Galois group GalF to the symmetric group of the diagram.

(Galois actions!)
Start with a F -split Gs, we first take twists on Dynkin diagrams to get quasisplit

forms, then we could take inner forms of quasisplit forms. From the short exact sequence
(1), any F -form can be obtained in such a two-step twisting.

1.3.2. Localizations and unramified groups. A global field is a number field or a function
field of curves defined over a finite field. A local field is just a completion of a global
field.

Now let G be defined over a nonarchimedean local field F . G is called unramified if
G is quasisplit and splits over some finite unramified extension of F . These are groups
defined by base change from a smooth reductive group scheme over O. They are in
bijection with the reductive groups defined over the residue field k. Note that every
reductive group defined over a finite field is quasi-split.

Let G be an algebraic group defined over a number field F . We consider the base
changes of G over various completions Fv. G is unramified at a place v if GFv is
unramified over Fv. It is obvious that G is unramified at all but finitely many places
v.

1.4. Some examples.

1.4.1. Torus. Recall that a torus T over F is an algebraic group whose base change TF
is isomorphic to a finite product of Gm,F . A split torus T is a product of Gm,F . Now
all forms are outer as G is abelian. Let G0 be the split torus of rank n then the root
datum associated with G0 is the free abelian group of rank n with trivial Galois action.
Therefore, the set of rank n tori is parameterized by the group Hom(GalF , GLn(Z)).

Real tori of rank one: Gal(C/R) ∼= {±1} with −1 representing the conjugation map.
GL1(Z) = {±1}. So there are two real tori of rank one: the split torus Gm,R and the
compact torus U(1).

Rational tori of rank one: We need to consider the set Hom(GalQ, {±1}). The
trivial map corresponds to the split torus Gm. Given a nontrivial homomorphism
φ : GalQ → {±1}, the kernel of φ determines a quadratic extension K by Galois
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theory. We may construct a rational tori TK whose rational points are exactly the
norm one element in K. All rational tori are constructed as above.

Real tori of higher rank: Each matrix A ∈ GL2(Z) satisfying A2 = I defines a real
torus of rank n. The identity matrix I corresponds to the split tori. Since A2 = I,
its eigenvalues are 1 or −1. (???) What is the meaning of numbers of eigenvalue 1?
products of R× and U(1)? Up to conjugate, A is diagonal with {±1}???

Rational tori of higher rank: This is Galois representation.

1.4.2. Real forms of classical algebraic groups. Let G be the split form of a simple
classical group. Then we are required to study H1(Z/2Z,Aut(GC)). I will just consider
the real forms of SLn in this part.

The real forms of simple complex Lie algebras are classified in terms of Vogan di-
agrams. The classification theorem and the full list of real forms of classical and
exceptional types can be find in [Kna4]. The real forms of type An(n ≥ 2) depends
on the parity of n. They have a split form SL(n = 1), and a unique quasi-split form
because the automorphism group of the Dynkin diagram is generated by the reflec-
tion. Let A be the antidiagonal matrix in GLn(C) with alternating 1s and −1s going
from the bottom left to the top right. Then ρ(g) = Ag−tA−1 represents the nontrivial
automorphism.

• If n = 2r is even, we have the split form SLn+1, and unitary forms SUp,n+1−p(0 ≤
p ≤ [n2 ]). The inner forms of SLn+1 is just itself. All unitary forms are outer
forms of the split form, and they are inner forms of each other. The quasi-split
form is the compact form SUn+1.
• If n = 2r − 1 > 1 is odd, we have the split form SLn+1, a quaternion form
SLr(H), and unitary forms SUp,n+1−p(0 ≤ p ≤ [n2 ]). The inner forms of the
split form is SLn+1 and SLr(H). All unitary forms are outer forms of the split
form, and they are inner forms of each other. The quasi-split form is the unitary
group SUr,r.

5

We may use the Galois cohomology to study the classification. Here we study the
forms of the split form. The Galois action is just the action on coefficients in this case.
The short exact sequence of automorphisms for SL(n+ 1,C) reads

1→ PSLn+1(C)→ Aut(SLn+1(C))→ {±1} → 0.

We first study the inner forms, that is,H1(GalR, PSLn+1(C)) = H1(GalR, PGLn+1(C)).
From the short exact sequence

1 7→ C× → GLn+1(C)→ PGLn+1(C)→ 1,

we have the exact sequence of cohomology groups6

5If r = 1, we have only a split form SL(2) and a compact form SU(2). SU(1, 1) is isomorphic
to SL(2) by the cayley transform from the upper half plane to the unit disc. The quaternion group
SL1(H) is isomorphic to SU(1) by the conjugation on the norm one quaternions. SU(2) is an inner
form of SL(2) since there is no outer automorphism for SL2(C).

6We could only define H0 and H1 for non-abelian G-modules, and the long exact sequence ends at
H1(G,C) for a short exact sequence 1 → A → B → C → 1 of non-abelian G-modules. However, if A
is central in B (thus abelian), we may extend the long exact sequence to H2(G,A). See [Ser2].
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H1(GalR, GLn+1(C))→ H1(GalR, PGLn+1(C))→ H2(GalR,C×).

The first term is zero by the (generalized) Hilbert 90, the second is isomorphic to
R×/R+ from the cohomology of finite cyclic groups. Therefore, H1(GalR, PGLn+1(C))
is of order either one or two.

Writing everything explicitly, we need to decide whether given D ∈ GLn+1(C))
with DD a scalar, we can find B and λ such that D = λB−1B. If n + 1 is even,

D =

(
0 I
−I 0

)
represents a nontrivial class because it has a negative determinant. If

n+1 is odd, D/
√
λ has determinant one, and is of the form B−1B by the vanishing of

H1(GalR, GLn+1(C)). This recovers the classification of inner forms of type An.

Remark 1.3. The long exact sequence associated with the Aut(G)-exact sequence as-
serts that H1(GalR, PSL(C)) is a subset of H1(GalR,Aut(G(C))). Therefore the inner
forms are parameterized by H1(GalR, PSL(C)). I believe this is true for general F -
forms of algebraic groups, but I do not know proof.

Now we consider the outer forms 7. We just need to specify an outer automorphism
O(x) := g 7→ xg−tx−1(x ∈ PGLn+1(C)). We need to find x ∈ GLn+1(C) with xx̄−t =
λ ∈ C× subject to the equivalence relation defined by x ∼ µx, x ∼ BxB̄t and x ∼ x−t.
This is exactly the equivalence classes of Hermitian forms, and we recover the inner
forms as various unitary group.

All real forms of type Bn and Cn are inner. The quasisplit form of type Dn is the
group SO(2n− 1, 1).

1.4.3. inner forms of GLn. Let G be an inner form of G′ and choose an isomorphism ψ.
Then the base changes over various completions are also inner forms. The associated co-
homology cycle is just the natural mapH1(GalF ,Aut(G(F )))→ H1(GalFv , H

1(Aut(G(F v))))
induced from the inclusion GalFv ↪→ GalF and F → F v.

Now let G′ = GL(n). The general classification of reductive groups over local and
global fields assigns a family of invariants

{invv = invv(G,ψ)}
to (G,ψ) parameterized by the valuations v of F . The local invariant invv is attached
to the localization of (G,ψ) at Fv, and takes values in the cyclic group Z/nZ. It can
assume any value if v is nonarchimedean, but satisfies the constraints 2 invv = 0 if
Fv ∼= R and invv = 0 if Fv ∼= C. The elements in the family {invv} vanish for almost all
v, and satisfy the global constraint

∑
invv = 0. Conversely, given G′ = GL(n) and any

set of invariants {invv} in Z/nZ with these constraints, there is an essentially unique
twist (G,ψ) of G∗ with the given invariants.

If F = Q. Then G is a central simple algebra of degree n. Let Qp be a nonar-
chimedean local field, let c ∈ Z/nZ, if (c, n) = 1, we get φ(n)-non-isomorphic central
division algebras of rank n over F . If (c, n) ̸= 1, Gv is a matrix over a central division
algebra of a smaller rank.

If n = 2. There are two possibilities of central simple algebras over a local field.
The split algebra M2×2(Qv) and the unique quaternion algebra D. From the above

7We have to explicitly compute the outer forms since we do not have a good long exact sequence.
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discussion, an inner twist of GL(2) is uniquely determined by an even number of places,
above which the group G ramifies.

1.5. Dual group and L-group. Given an algebraic groupG with root datum Ψ(G,T ) :=
(X∗(T ), X∗(T ),Φ,Φ

∨), the dual root datum is defined as Ψ∨(G,T ) := (X∗(T ), X
∗(T ),Φ∨,Φ).

By Chevalley-Demazure theorem, Ψ∨ gives rise to a complex reductive connected alge-
braic group Ĝ, called the complex dual of G.

In practice, this duality preserves the types An and Dn and interchanges the types
Bn and Cn. In addition, it interchanges the adjoint and simply connected forms of the
relevant group.

Remark 1.4. The dual groups distinguish F -forms up to inner forms. It determines
completely a quasisplit form: each inner class has a unique quasi-split F -form.

The L-group LG of a reductive algebraic group G is a group introduced by Langlands
that controls the representation theory of G. We first explain a Galois action on the
complex dual group Ĝ. For simplicity we first assume that G is quasisplit, we can
always find a Borel subgroup B. This Borel subgroup defines a set of positive root
system Ψ0(G,B, T ). The Galois action on this based root datum induces a Galois

action on its dual root datum, and then lifts to an action on Ĝ. If G is split, GalF
acts trivially. In general, we have a based root datum over F . If γ ∈ GalF , it preserves
T (F ) and ∆, but not preserve ∆+. However, we could find gγ ∈ G(F ) such that gγγ
carries ∆+ to itself. The resulting action on ∆+ is independent of the choice of gγ .

In any case, we have a natural action of GalF on Ĝ. The L-group LG is defined as
Ĝ⋊GalF .

Remark 1.5. There is a modification of the L-group. Choose a finite extension K/F

such that GK is split, the Galois action of GalF on Ĝ factors through the finite quotient
GalF /GalK = GalK/F . We simply define the L-group as the semi-diret product Ĝ ⋊
GalK/F . This definition does not lose information since we are just collapsing the
components with the same structure. The L-groups then have only finitely many
components. This variant is used in Arthur’s classification theory.

Let G be an algebraic group over a number field F . Then its localizations GFv

has the same root datum and therefore the same complex dual Ĝ. The Galois action
of GalFv is just the restriction of the action of GalF . Therefore, we have canonical
morphisms LGFv →L GF .

2. Automorphic representations

2.1. Automorphic Forms. L2(G(F )\G(A)): quotient of a discrete group, like Γ\D.
harmonic analysis

2.1.1. The automorphic space. Let F be a number field8. If we choose an embedding
F → C, the induced topology is not locally compact. Actually, there is no canonical

8We may also consider another type of global field, function fields over finite groups. The only
difference is that they do not have archimedean completions
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embedding. We need a locally compact group associated with F . The various comple-
tions are locally compact, and we take the restricted product of these local fields to get
a locally compact group. This is the ring of adeles AF .

There are two types of places of F : (1). The non-archimedean ones. Each prime P
of OF defines a non-archimedean place, and the corresponding completion is FP. (2).
The archimedean places are defined by embeddings i : F ↪→ C. We use the symbol v
to denote a place, and Fv to denote the corresponding completion of F . If F = Q, the
non-archimedean places are the primes p, with completions Qp’s. The only archimedean
place is defined by the usual absolute value, and the completion is R.

A is the restricted direct product of Qv’s. With the restricted direct product topol-
ogy, A is a locally compact group. Q embeds into A as a discrete subgroup via the
diagonal embedding. The coset space Q\A is compact.

Let G be an algebraic group defined over a number field F . We may explicitly
describe G(AF ), the groups of AF -valued points of G, in coordinates. Fix an embedding
i : G→ GL(V ) form F -vector space and pick a lattice Λ ∈ V . For any nonarchimedean
place v, let Kv (hyperspecial maximal compact subgroup) be the stabilizer of Λ ⊗ Fv
in G(Fv). We get a family of compact open subgroups. The sequence (Kp) depends
on i,Λ, but different choices give equivalent sequences in the sense that only finitely
many Kp’s could be changed under different choices. Elements in G(Af ) are sequences
(gv) ∈

∏
G(Fv) such that gv ∈ Kv for almost all places. This description is independent

of the choice of the sequence (Kp).
We have the inclusion G(F ) ⊂ G(AF ) defined by diagonal embedding. G(F ) is a

discrete subgroup of G(AF ). The coset space G(F )\G(AF ) has a fundamental domain
which can be covered by a sufficiently large Siegel set. G(F )\G(AF ) has finite volume
if G is semisimple; it is compact if G is anisotropic.

To study the geometry of G(F )\G(AF ), we need the strong approximation theorem.
Recall that if S is a finite set of places. them G(AF,S) means

∏
v∈S

G(Fv), and G(AS)

means the elements supported outside S.

Proposition 2.1 (Strong approximation theorem). Assume that G is simply-connected
and S is a finite set of places of F such that G(AF,S) is not compact, then G(F ) is

dense in G(AS).

Remark 2.1. The weak approximation asks whether G(F ) is dense in G(AF,S). If F is
an algebraic number field then any group G satisfies weak approximation with respect
to the set of infinite places.

The main theorem of strong approximation states that a non-solvable linear algebraic
group G over a global field F has strong approximation for the finite set S if and only if
its radical N is unipotent, G/N is simply connected, and each almost simple component
H of G/N has a non-compact component Hs for some s in S.

Let U be an open compact subgroup of G(Af ), then the subgroup ΓU := G(F ) ∩ U
is called a congruence subgroup of G(F ) 9. The congruence subgroups of split classical

9Congruence subgroups should be considered as “real arithmetic subgroups”. For example, any
curve of genus g ≥ 2 is an arithmetic quotient of the upper half plane, but only the quotient by
congruence subgroups have dee arithmetic properties.
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groups are exactly the classical congruence subgroups. If Γ is congruence, and G
satisfies strong approximation, we have

ΓU\G(F∞) ∼= G(F )\/U.

Remark 2.2. If G is defined over Q, choose an embedding G→ GL(N), we may define
congruence subgroups of G as those containing a principal congruence subgroup. The
definition is independent of the embedding. To see that they are the same as those
defined abouve, note that a basis of G(Af ) is defined by a finite product of local open
subgroups over finite places and local open subgroups are exactly defined by congruence
subgroups.

For general reductive G, the quotient is a finite union of arithmetic quotients of
G(F∞).

Example 2.2. Take G = SL2 over Q and S = {∞}. Fix a positive number N .

Let Ip be the subgroup of SL2(Qp) consisting of elements

(
a b
c d

)
such that c ≡ 0

mod p. For (p,N) = 1, Ip = SL2(Zp). Define K0(N) =
∏
Ip, it is compact open

in G(Af ). And the corresponding congruence subgroup is Γ0(N). The open modular
curve X0(N) = Γ0(N)\SL2(R) is therefore isomorphic to SL2(Q)\SL2(A)/K0(N).

G(F )\G(AF ) maps canonically to the congruence subgroup quotients, and defines
a map lim←−

U

G(F )\G(AF )/U ∼= lim←−
Γ

Γ\G(F∞). When the strong approximation theorem

holds for G, it is surjective. The kernel is always trivial: the intersection of all open
compact subgroup of G(AF ) is the trivial group. Therefore, the automorphic space
G(F )\G(AF ) can be considered as a universal object of the arithmetic quotients of
G(F ).

This seems to be a standard procedure. Given a bad object, the inverse limit of its
“finite quotients” can be described in adelic language, therefore locally compact and
have rich arithmetic properties. Let me give some examples.

• The ring of integers Z is a discrete set, we take quotients by its ideals, their
inverse limit is Ẑ which is the maximal compact subgroup of AQ,f . Actually,

Af = Ẑ⊗Q.
• If G is defined over Q, G(R) is a just Lie group. The inverse limit of congruence
quotients is the automorphic space. It is then an arithnetic object.
• Let D be a Hermitian symmetric domain, which is just an analytic object. Its
congruence quotients are algebrac objects, and their inverse limit is the connect
Shimura variety.
• The roots of unity are torsion points in C. The set of n-th root of unity is
isomorphic to Z/nZ. Let n-vary, these finite quotients form an inverse system

with respect to divisibility, and the inverse limit is Ẑ. This is the maximal
compact subgroup of Af . If we consider torsion points on an elliptic curve, the
same construction yields the Tate-module.

2.1.2. Automorphic forms and automorphic representations. Let G be a reductive al-
gebraic group over F .

Definition 2.3. A function f on G(F )\G(AF ) is called an automorphic form if
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• f is smooth. This means that the nonarchimedean component f∞ is smooth,
and locally constant in G(AF,f ).
• f is right K-finite. Here K = (Kp) is in the definition of G(AF ), and the
condition means that the right K-translations of f span a finite dimensional
vector space. Equivelently, f is K∞-finite and is right invariant under an open
compact subgroup of G(AF,f ).
• f is of moderate growth. This means that f(g) can be controlled by some powers
of the matrix elements of g and i(g) (after choose an embedding G→ GLN ).
• f is Z(g)-finite. Here Z(g) is the center of the universal enveloping algebra.
The Z(g)-finiteness is equivalent to a system of differential equations for f∞.

We let A(G) denote the space of automorphic forms on G.

Definition 2.4. An automorphic form f on G is called a cusp form if, for any parabolic
F -subgroup P =MN of G, the constant term

fN (g) =

∫
N(F )\N(AF )

f(ng)dn

is zero as function on G(AF ).

Remark 2.3. In certain literature, the automorphic form is defined with a character
ω : Z(AF ) → C, so the function f are functions on G(F )\G(A) such that f(zg) =
ϕ(z)f(g). Our space is just the sum over all characters.

We let A0(G) be the space of cusp forms on G.

2.2. Automorphic representations. Recall that A(G) denotes the space of auto-
morphic forms on G. As usual , we define right translation r by r(g)f(h) = f(hg−1).
But we cannot regard A(G) as a G(AF )-module. At archimedean places, the K-finite
property is not preserved by all G(F∞)-translations, so we can only get a (g∞,K∞)-
module at archimedean places. The space A(G) is a G(AF,f ) × (g∞,K∞)-module.
By abuse of language, we still say A(G) is a G(AF )-representation. An irreducible
G(AF )-representation is called an automorphic representation if it is isomorphic to a
subquotient of A(G). We study the properties of automorphic representations in this
section.

2.2.1. Harish-Chandra modules. First, we need to define the Harish-Chandra mod-
ule. We assume we are studying representations of Lie groups10. If G(R) is compact,
the Peter-Weyl theorem asserts that every irreducible representation (π, V ) is finite-
dimensional. The topology on finite-dimensional spaces is naive, and all vectors v ∈ V
are smooth. Th

To study the representations of noncompact Lie groups, we have to study infinite
dimension representations. The first problem in infinite dimensional representation is
the topology, we need to equip appropriate topology over the space so that the operator
has continuous properties. Some functional analysis must be involved in this step. The
second problem is that not all vectors are smooth vectors. All these problems come from

10(g∞,K∞)-module is just a finite product of Harish-Chandra modules over archimedean places, we
also regard a complex Lie group as a real Lie group to study representations.
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analysis. Harish-Chandra modules, or (g,K)-modules, is an algebraic modification of
these representations. We could use it to study representations using algebraic methods
to avoid subtle analysis issues, while at the same time no “representation structure” is
lost in this modification. Let K be a fixed maximal compact subgroup of G. A (g,K)-
module (π, V ) is vector space which is at the same time a g-module and a K-module,
the two-modules structures are compatible: (1). The infinitesimal representation of
K is the restriction of g-representation. (2). the adjoint action of K on g becomes
the conjugation of matrices as operators on V . A G-representation defines canonically
a (g,K)-module as follows. First to define smooth vectors, so we have to restrict to
smooth vectors to get a g-module. Then we consider the space of K-finite vectors.

Two representations are called infinitesimal equivalence if their associated (g,K)-
modules are isomorphic. this means the vector spaces are the same, with different
completions. See [Sch2].

What representations are we interested in? The simplest generalization is unitary
representations. The underlying spaces should be Hilbert spaces and G(R) acts as
unitary operators. Except for the trivial representation, all unitary representations are
infinite-dimensional. We also need to consider a larger class of representations, called
admissible representations. An irreducible (g,K)-representation V is called admissible
if, for any K-representation π, the multiplicity of π (considered as a K-representation
by restriction) in V is finite. Unitary representations are admissible. One reason
why we need admissible representation is that the category of unitary representation
is not good as it is not stable under standard representation theory operators, say,
parabolic inductions. Another reason is that the classification theory for admissible
representations is much simpler, while it is really hard to determine which admissible
representation is actually unitary.

2.2.2. Hecke algebras. According to Grothendieck’s philosophy, structure sheaves over
spaces (or functions over spaces) are more fundamental objects than the spaces them-
selves. If G is a group, we define Hecke algebra H(G) as the space of certain functions
over G, with the algebra structure defined by convolution. Therefore a G-representation
(π, V ) can be identified as a H(G)-representation as follows: let f ∈ H(G), then we
define π(f) as

∫
G f(g)π(g)dg where dg is a Haar measure. Conversely, the Hecke al-

gebra representation could recover the original representation: just approximate Dirac
operators by functions. The advantage of the Hecke algebra interpretation is that it is
simpler to study the structure of space of functions instead of single points.

The Hecke algebra is defined as follows:

• Nonarchimedean Hecke algebras. Let S be a set of nonarchimedean places of F .
A function of f on G(FS) is called smooth if it is locally constant. In particular,
if S is just a single point v, we get the smooth functions over G(Fv). Similarly,
if S contains all archimedean places of F , then a function on G(ASF ) is smooth if
it is locally constant. We also define the space C∞

c (G(FS)) (resp. C
∞
c (G(ASF )))

of smooth, compactly supported functions on G(FS) (resp. G(ASF )). They are
algebras under conolution of functions:

f ∗ h(g) :=
∫
f(x)h(x−1g)dx.
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In particular, if F is a number field, and S = ∞ is the set of archimedean
places, then we hace H∞ := C∞

c (G(A∞
F )).

H∞ is the direct limit of Hecke algebras over finite places:

C∞
c (G(A∞

F )) = lim−→
S

(C∞
c (G(FS))⊗v/∈S 1G(O)v),

where S is a finite set of nonarchimedean places, v is in the complementary of
S in the set of nonarchimedean places.
• Archimedean Hecke algebras. Let F be a number field. Then G(F ⊗R) is a real
reductive group. The hecke algebra is just the convolution algebra of compactly
supported smooth functions. In this case, a smooth function is in the usual
sense, that is, the partial derivatives of any order exist and are continuous.
• The global Hecke algebra is just the tensor product of the nonarchimedean
hecke algebra and the archimedean Hecke algebra.
• If G(Fv) is unramified, we also define the spherical Hecke algebra H(Gv//Kv)
as the space of Kv-biinvariant compactly supported functions, with the algebra
structure defined by convolution. It plays a central role in studying spherical
representations.

2.2.3. The tensor product theorem. We start by defining a restricted tensor product of
vector spaces. Let Ξ be a finite subset, and Ξ0 be a finite subset. Let {Wv}v∈Ξ be a
family of C-vector spaces and choose ϕ0v

11 of local representations. for each v ∈ Ξ−Ξ0.
For all sets Ξ0 ⊂ S ⊂ Ξ of finite cardinality set WS :=

∏
v∈SWv. If S ⊂ S′, there is a

map WS →WS′ defined by:

⊗v∈Swv 7→ ⊗(⊗v∈S′−Sϕ0v).

The vector space

W := ⊗′ ⊗Wv := lim−→
S

WS

is the restricted tensor product of the Wv with respect to the ϕ0v. Thus W is the set
of sequences (Wv)v∈Ξ ⊂ ⊗vWv such that wv = ϕ0v for all but finitely many v ∈ Ξ.

Remark 2.4. The isomorphism classes of W in general depend on the choice of ϕ0v.
However, if we replace ϕ0,v by nonzero scalar multiples we obtain isomorphism vector
spaces.

Example 2.5. One has

C∞
c (G(A∞

F )) ∼= ⊗′C∞
c (G((Fv)))

with respect to the idempotents eKv := 1
vol(Kv)

1Kv whereKv is a hyperspecial subgroup.

Theorem 2.6 (Flath’s theorem). Every admissible irreducible representation W of
C∞
c (G(AF )) can be written as

W ∼= ⊗′
vWv

11Unlike the direct limit of a family of abelian groups, we have to specify nonzero vectors for almost
all indices. This is because we cannot tensor with the “canonical element” 0 ∈ Wv.



XIAOJIANG CHENG 15

where the restricted tensor product is with respect to elements ϕv0 ∈WKv
v , dimWKv

v =
1, and the isomorphism interwins the action of C∞

c (AF ) with the action of ⊗′
v(G(Fv),

the restricted tensor product being with respect to the idempotents eKv .
In particular, automorphic representations are restricted tensor products.

Let v be a nonarchimedean place, Wv be an irreducible smooth admissible repre-
sentation of G(Fv), then dimWKv

v ≤ 1. If dimV K = 1, the representation is called
a spherical representation. One implication of Flath’s theorem is that for almost all
nonarchimedean places v, the representation Wv is spherical.

2.3. Classical modular forms. The interpretation of modular forms as automor-
phic representations: The point is that all operators can be interpreted as the right
translations.

We only consider elliptic modular forms with respect to the full modular group
SL2(Z). Elliptic modular forms for general congruence subgroups, or modular forms
associated with more complicated groups (say, Siegel modular forms, Hilbert modular
forms, Picard modular forms) will be omitted.

A modular form of weight k is just a holomorphic function f(z) on the upper half
plane H satisfies the functional equations

f(γz) =
1

(cz + d)k
f

(
az + b

cz + d

)
, ∀γ =

(
a b
c d

)
.

f(z) then has a Fourier expansion f(z) = anq
n where q = e2πiz. f(z) is called a cusp

form if a0 = 0. Let Sk be the space of cusp form s of weight k. There is a family of
linear operators Tn, called the Hecke operators, on Sk. They can be defined in terms
of their action on the Fourier coefficients of cuap forms, see [Bum]. An eigenform f is
a cusp form that is simitaneously eigenvaluea for all Tn.

Let f be an eigenform. We may associate an automorphic representation of πf on
PGL2(Q)\PGL2(A) in two steps. First, we have the isomorphism PGL2(R)/PGO2 =
H where g is mapped to gi. f could be considered as a function on PGL2(R) that
is right PGO2-invariant but has a good transition formula with respect to the left
PGL2(Z). We define a function ϕf on PGL2(Z)\PGL2(R) by the formula

ϕf (g) = f(gi).

Then ϕf is left PGL2(Z)-invariant but is an eigenfunction with eigenvalue e2πik under
the right translation of the circle SO(2). From the isomorphism PGL2(Z)\PGL2(R) =
GL2(Q)\PGL2(A)/U where U is a compact subgroup of PGL2(Af ), we get a function
on GL2(Q)\PGL2(A). The subspace generated by this vector is the automorphic rep-
resentation πf .

The archimedean component of πf is the holomorphic discrete series D+
k−1. The

nonarchimedean components are all spherical representations. Let p be a prime, the
Hecke eigenvalue of f is exactly the action of an element (?) in the local spherical
Hecke algebra.

The multiplicity one theorem says that the association f → πf is injective. Note
that only the archimedean component is not enough to distinguish eigenforms with the
same weight.
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Remark 2.5. There are several other ways to define Hecke algebras and Hecke operators.
But they are defined on automorphic forms over Γ\D, instead of representations of G.

Hecke algebra can be defined as the algebra of double cosets with the algebra struc-
ture defined in terms of the multiplication of double cosets. For elliptic modular forms,
the Hecke operators can be explicitly written down in terms of the actions on Fourier
coefficients. See [Sch].

In most cases, the space Γ\D is a moduli space for certain algebraic structures
(say, curves). The automorphic forms are then global sections of certain line bun-
dles over Γ\D. With the moduli interpretation, the Hecke operators can be defined
as a correspondence defined in terms of operators on the geometric structures. The
correspondence induces operators on global sections of line bundles. See [RS].

2.4. Satake isomorphism. We want to classify spherical representations of G over
non-archimedean places. Almost all components of an automorphic representation is
spherical. In many cases, these spherical components dertemines the automorphic
representations via multiplicity one theorems.

The classification of spherical representation is equivalent to the structure theorem
of the spherical Hecke algebra. This is why we prefer to consider representations as
over hecke algebras rather than over the groups: function theory becomes a powerful
tool then to study the representations.

In this subsection, F is a non-archimedean local field with a ring of integers OF .
Let us assume for simplicity that G is a split reductive group over F and let K be a
hyperspecial subgroup. Let B = TN be a Borel subgroup of G, with maximal torus T .
So T ∼= (GL1)

r and T (F ) ∼= (F×)r. Let W := NG(T )/T be the Weyl group of G. The
action of the Weyl group W on the set of characters of T (F ) is defined

(wχ)(t) = χ(w−1tw).

Let H(G(F )//K) be the spherical Hecke algebra of G. The Satake isomorphism tells
us the structure of H(G(F )//K).

Theorem 2.7 (Satake isomorphism). Assume that G is split. There is an isomorphism
of algebras

S : H(G(F )//K) ∼= C[T̂ ]W (Ĝ,T̂ )(C)

where Ĝ is the complex dual of G and T̂ is a maximal torus.

A sketch of the construction: Choose a Borel subgroup B = TN containing T ,
normalize Haar measure dn so that N ∩ K gets total measure 1, and let δ(t) be the
positive function on T defined by ∆(t) = d(tnt−1)/dn (modulus). For f ∈ G(F),K,
define

Sf(t) = δ(t)1/2
∫
N
f(tn)dn, t ∈ T.

The mapping S defines an isomorphism of H(G(F ),K) onto the subalgebra H(T, T ∩
K)W . See [Kna1] (P.294).
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Remark 2.6. The RHS can be interpreted as the algebra of virtual finite-dimensional
complex algebraic representations of Ĝ under tensor product, by taking the character
12. So we can also write the above isomorphism as

H(G(F )//K)⊗ C ∼= K0(Rep(Ĝ))⊗ C

One application of Satake isomorphism is to classify spherical representations of
G(F ). First, recall that

Proposition 2.8. If V is a smooth representation of a locally profinite group G and
K ⊂ G is an open compact subgroup, then the map V 7→ V K defines a functor from
the category of smooth representations of G to the category of modules for the Hecke
algebra H(G//K). The restriction to the representations V of G with nonzero V K

defines an equivalence of categories.

Now H(G(F )//K) is commutative, so the map V 7→ V K induces a bijection of
spherical representations with characters of H(G(F )//K). The character associated
with a spherical representation V is exactly the action of H(G(F )/K) on the one-
dimensional space V K . From the Satake isomorphism,

HomC−alg(C[T̂ ]W (Ĝ,T̂ )(C),C) = T̂ /W (Ĝ, T̂ )(C).

On the other hand, every semisimple conjugacy class in Ĝ(C) intersects T̂ (C) and two

elements of T̂ (C) are conjugate in G if and only if they are in the same W (Ĝ, T̂ )-orbit.
In conclusion,

Theorem 2.9. Irreducible spherical representations of G(F ) are parameterized by

semisimple conjugacy classes in Ĝ. The semisimple class associated with an unramified
representation π is called the Satake parameter of π.

Example 2.10 (GLn). Let G = GLn over Qp. Its compact dual is GLn(C). The
Weyl group is isomorphic to the group Sn. The maximal torus is the subgroup of
diagonal matrices, isomorphic to (Gm)

n An element w ∈W ∼= Sn is represented by the
corresponding permutation matrix.

The Hecke algebra is H(G(F )//K) = C[t±i , · · · , t±n ]Sn . From the theory of elemen-
tary divisors, we have

GL(n)(Qp) = GLn(Zp)T (Qp)GLn(Zp).
Each double coset can be written as the double coset associated with a diagonal matrix
whose entries are powers of p. A permutation of the entries gives the same double coset
since permutation matrices are in the subring GLn(Zp).

So the irreducible spherical representations are parameterized by the Sn-orbits of
the n-tuples of complex numbers.

The Hecke algebra C∞
c (GLn(F )//GLn(OF )), as a C-module, has a basis given by

1λ := GLn(OF )diag(ϖλ1 , · · · , ϖλn)GLn(OF )

12The RHS in Satake isomorphism is the center of Z(g) by the Harish-Chandra isomorphism. But
infinite dimensional representations are classified by its infinitesimal character by the theorem of highest
weight.
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with λ := (λ1, · · · , λn) ∈ Zn and λi ≥ λi+1. As a C-algebra, it is generated by 1λ(r)
with λ(r) = (1, · · · , 1, 0, · · · , 0)(1 ≤ r ≤ n) and λ = (−1, · · · ,−1).

On the generating set above the Satake isomorphism is given by S(1λ(r)) = qr(n−r)/2tr(∧rCn).

Now we explain the construction of the spherical representation associated with a
semisimple conjugacy class. Choose a diagonal element (t1, · · · , tr) in the conjugacy
class, then it defines an unramified character χ : T (F )→ C×. And we can construct the
representation associated with this unramified character. Recall that χ is an unramified
character if χ is trivial when restricted to T (OF ) ∼= (OF )r. In this case, χ is of the
form

χ(a1, · · · , ar) = t
ordp(a1)
1 · · · tordp(ar)r , ai ∈ Q×

p

for some ti ∈ C×.
We may regard χ as a character of B(F ) using the projection B(F )→ N(F )\B(F ) ∼=

T (F ). Then we may form the induced representation

IB(χ) := Ind
G(F )
B(F )δ

1/2
B · χ13.

Here, δB is the modulus character of B, defined by:

δB(b) = |det(Ad(b)|Lie(N))|v(F ).

Explicitly, the space of IB(χ) is the subspace of C∞(G(F )) satisfying:

(a). f(bg) = δ(b)1/2χ(b) · f(g) for any b ∈ B(F ) and g ∈ G(F ).
(b). f is right-invariant under some open compact subgroup Uf of G(F ).

Then IB(χ) is an admissible representation of G(F ). These representations IB(χ)
are called the principal series representations.

Because of the Iwasawa decomposition G(F ) = B(F ) ·K, an element f of IB(χ) is
completely determined by its restriction to K. The constant function 1 on K lifts to a
function

f0(bk) = δ
1/2
B · χ(b).

This function spans the one-dimensional space of K-invariant functions of IB(χ).
Thus IB(χ) has a unique irreducible subquotient πχ with the property that πKχ ̸= 0.

This is the spherical representation associated with the unramified character χ.

Remark 2.7. Nonsplit case, see Getz’s book. This is why we need Galois twist.

2.5. Eisenstein series and Langlands spectral decomposition. In general, the
regular representation R of G(A) on L2(G(Q)\G(A)) does not decompose discretely.
Eisenstein series describe the continuous part of the spectrum.

The Eisenstein series gives embedding of automorphic representations in the space
of automorphic forms???

13This is the normalized induction. When we are studying representations over G(R), the factor

δ1/2 is used so that the induction of a unitary representation is again unitary
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2.5.1. Preliminaries. Let G be an algebraic group over Q. We write AG for the largest
central subgroup of G over Q that is a Q-split torus. The rank of AG is called the rank
of G. We write X(G)Q for the additive group of homomorphisms χ : g → gχ from G
to GL(1) that are defined over Q. Then X(G)Q is a free abelian group of rank k. WE
also form the real vector space

aG = HomZ(X(G)Q,R)

of dimension k. There is then a surjective homomorphism HG : G(A) → aG, defined
by

⟨HG(x), χ⟩ = | log(xχ)|, x ∈ G(A), χ ∈ X(G)Q.

Sometimes we consider a smaller space. Let G1 be the kernel of HG, and let
XG = G(Q)\G1 = AGG(Q)\G(A). XG is not compact in general but it is of finite
volume With respect to the G-invariant measure. We want to study the right regular
representation L2(XG) of G. All components in the decomposition are unitary from
the G-invariance of the measure. XG is finite volume, so there are sufficiently many
interesting functions over XG, say, the constant function is L2. This is why we study
XG instead of G(Q)\G(A). L2(G(Q)\G(A)) is the direct sum of twists of L2(XG). It
is, strictly speaking, not L2!

We also need to consider parabolic subgroups of G. A parabolic subgroup of G is
a Q-algebraic subgroup P such that P (C)\G(C) is compact. Any such P has a Levi
decomposition P =MNP , which is a semidirect product of a reductive subgroup M of
G over Q with a normal unipotent subgroup NP of G over Q. The unipotent radical
NP is uniquely determined by P , while the Levi component M is uniquely determined
up to conjugacy by P (Q).

Let P0 be a fixed parabolic subgroup of G with a fixed Levi decomposition P0 =
M0N0. Any subgroup P that contains P0 is called a standard parabolic subgroup.
The set of standard parabolic subgroup is finite, and is a set of representatives of the
set of G(Q)-conjugacy classes of parabolic subgroups over Q. A standard parabolic
subgroup has a canonical Levi decomposition P = MPNP , where MP is the unique
Levi component of P that contains P0. From MP , we can form the central subgroup
AP = AMP

, the real vector space aP = aMP
, and the surjective homomorphism HP =

HMP
. When P = G, we recover the original definition of AG, aG, and HG. If P = P0,

we use the notations A0, a0, and H0. We extend HP to a fucntion from G(A) by setting
HP (nmk) = HMP

(m).
We have a variant of the regular representation R for any standard parabolic sub-

group P . It is the regular representation RP of G(A) on L2(NP (A)MP (Q)\G(A)). It
is the induced representation

RP = Ind
G(A)
NP (A)MP (Q)(1NP (A)MP (Q)) ∼= Ind

G(A)
P (A)(1NP (A) ⊗RMP

).

RP (f) is an integral operator with kernel

KP (x, y) =

∫
NP (A)

∑
γ∈MP (Q)

f(x−1γny)dn, x, y ∈ NP (A)MP (Q)\G(A).

We need to compare different parabolic subgroups. Two standard parabolic sub-
groups P and P ′ are associated with each other if the restrictions of elements in the
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Weyl group induce linear isomorphisms of corresponding subspaces aP and aP ′ . Let
W (aP , aP ′) be the group of such elements. Take GLn as an example. We fix the
minimal parabolic subgroup as the subgroup of upper triangular matrices. Then any
standard parabolic subgroup is a subgroup of quasi-upper triangular matrices. They
are parameterized by partitions n = n1 + · · · + nr. Two such standard parabolic sub-
groups are associated with each other if and only if when their corresponding partitions
are the same up to a permutation.

2.5.2. Eisenstein series and the Langlands decomposition theorem. Let P be a standard
parabolic subgroup of G, and that λ lies in a∗P,C. We have a family of representations

IP (λ) parameterized by λ.
The representation space IP (λ)14 is the Hilbert space HP of measurable functions

ϕ : NP (A)MP (Q)AP (R)0\G(A)→ C
such that the function

ϕx : m→ ϕ(mx), m ∈MP (Q)\MP (A)1,
belongs to L2

disc(MP (Q)\MP (A)1) for any x ∈ G(A), and such that

||ϕ||2 =
∫
K

∫
MP (Q)\MP (A)1

|ϕ(mk)|2dmdk <∞.

Any y ∈ G(A), acts on IP (λ) via the operator IP (λ, y) which maps a function
ϕ ∈ HP to the function

(IP (λ, y)ϕ)(x) = ϕ(xy)eλ+ρP (HP (xy))e
−(λ+ρP )(HP (x)).

Eisenstein series associates a function on G(A) to any function ϕ in IP (λ). The
formal definition apply to any elements x ∈ G(A), ϕ ∈ HP , and λ ∈ a∗P,C. The
associated Eisenstein series is

E(x, ϕ, λ) =
∑

δ∈P (Q)\G(Q)

ϕ(δx)e(λ+ρP )(HP (δx)).

We have the formal equations

E(x, IP (λ, y), λ) = E(xy, ϕ, λ).

Therefore, Eisenstein series is an intertwining operator from IP (λ) to the space
of functions on G(A) with right regular representation. The Eisenstein series need
not to be in L2(G(Q)\G(BA)) in general. If λ ∈ iaP , the Eisenstein series are in
L2(G(Q)\G(A)). The Langlands decomposition theorem asserts that these automor-
phic forms generate the full space L2(G(Q)\G(A)). However, associated parabolic
groups produces the same Eisenstein series. So the intwetwing operator is actually
defined on associated classes of parabolic subgroups, and we have to compare parabolic
subgroups.

We need to compare different parabolic subgroups. Two standard parabolic sub-
groups P and P ′ are associated with each other if the restrictions of elements in the
Weyl group induce linear isomorphisms of corresponding subspaces aP and aP ′ . Let

14The representation space is independent of λ. This is essential in the Langlands spectral decom-
position theorem.
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W (aP , aP ′) be the group of such elements. Take GLn as an example. We fix the
minimal parabolic subgroup as the subgroup of upper triangular matrices. Then any
standard parabolic subgroup is a subgroup of quasi-upper triangular matrices. They
are parameterized by partitions n = n1 + · · · + nr. Two such standard parabolic sub-
groups are associated with each other if and only if when their corresponding partitions
are the same up to a permutation.

If s ∈W (aP , aP ′), we may define the operator ([Art])

M(s, λ) : HP → HP ′

that interwines IP (λ) with IP ′(sλ):

M(s, λ)IP (λ, y) = IP ′(sλ, y)M(s, λ).

The Eisenstein series E(x, ϕ, λ) and intertwining operators M(s, λ) are formally de-
fined for all λ ∈ ia∗P,C. They actually converge absolutely for K-finite ϕ and sufficiently
regular λ. They can be analytically continued to meromorphic functions of λ ∈ a∗P,C
satisfy the functional equations

E(x,M(s, λ)ϕ, sλ) = E(x, ϕ, λ)

and

M(ts, λ) =M(t, sλ)M(s, λ).

Theorem 2.11 (Langlands decomposition theorem). Given an associated class P =

{P}, define L̂P to be the Hilbert space of families of measurable functions

F = {FP : ia∗p
15→ HP , P ∈ P}

that satisfy the symmetry condition

FP ′(sλ) =M(s, λ)FP (λ)

and a finiteness condition. Then the mapping that sends F to the function∑
P∈P

n−1
P

∫
ia∗P

E(x, FP (λ), λ)dλ,

where nP =
∑
P ′∈P

|W (aP , aP ′)|, defined whenever FP (λ) is a smooth, compactly sup-

ported function of λ with values in a finite-dimensional subspace of H0
P , extends to

a unitary mapping from L̂P onto a closed G(A)-invariant subspace L2
P(G(Q)\G(A)).

Moreover, the original space L2(G(Q)\G(A)) has an orthogonal direct sum decomposi-
tion

L2(G(Q)\G(A)) =
⊕
P
L2
P(G(Q)\G(A)).

15These λ represents unitary characters, therefore the induced representations IP (λ) are unitary
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2.5.3. An example: GL(2). .
Let G = GL2 over Q, and G1 be the norm one element of GL2(A). Let Γ = GL2(Z).

We are interested in the spectral decomposition L2(Γ\G1).
The discrete part L2

disc(Γ\G1) is the direct sum of the cuspidal spectrum L2
cusp(Γ\G1)

and a residual spectrum L2
res(Γ\G). The residual spectrum admits a very explicit

description

L2
res(Γ\G1) =

⊕
χ

χ ◦ det

where χ belongs to the group of continuous characters of Q\A1.
Now we consider the continuous spectrum. We have only one rational parabolic

subgroup P . It consists of upper triangular matrices. dim aP = 1 and W (aP , aP ) ∼= S2.
Let A∞ be the group of diagonal matrices (a, a−1) with a ∈ R×

+, T
1 be the subgroup

of T of diagonal matrices (a, b) with a and b in A1, N be the group of unipotent
matrices. Then H := HP is the space of measurable functions

ϕ : N(T ∩ Γ)A∞\G1 → C

such that for x ∈ G1 the function

t ∈ T 1 7→ ϕ(tx)

belongs to L2(()T ∩ Γ)\T 1 and such that

||ϕ||2 =
∫
K

∫
(T∩Γ)\T 1

|ϕ(tk)|2dtdk <∞

is a Hilbert space.
For any s ∈ C = aP,C, y ∈ G1 acts on IP (s) by the formula

IP (s, y)ϕ(x) = exp(−(s+ 1)H(x))ϕs(xy)

where

ϕs(x) = ϕ(x) exp((s+ 1)H(x))

for any x, y ∈ G1.
We define the Eisenstein series E(x, ϕ, s) and intertwing operators M(s) from IP (s)

to IP (−s).
Let F be the space of functions F : iR→ H which satisfy

F (−s) =M(s)F (s)

and

||F ||2 = 1

2

∫
iR
||F (s)||2ds <∞.

The map

F 7→ 1

2

∫
iR
E(x, F (s), s)ds.

defines an isometry from F onto the the continuous spectrum L2
cont(Γ\G1).

We consider the spectral decomposition of L2(Γ\H) where Γ = SL2(Z). This is
equivalent to studying the function theory of a quotient of G(Q)\G(Q).
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Define

E(z; s) =
∑

(m,n)=1

ys+
1
2

|mz + n|2s+1
=

∑
γ∈Γ∞\Γ

y(γz)s+
1
2 ,

where Γ∞ is the group of integral unipotent matrices. The convergence and continua-
tion are well-known.

The function equation

E(z, s) = ϕ(s)E(z,−s), ϕ(s) =
√
πΓ(s)ζ(2s)

Γ(s+ 1
2)ζ(2s+ 1)

comes from the group W (aP , aP ) ∼= S2.
E(z, s) has a simple pole at s = 1

2 with a constant residue. This is the residual
spectrum inside the discrete spectrum.

The map L2(R)even → L2(Γ\H) given by

F 7→ Ef =

∫
f(t)E(z, it)dt

is an isometry onto L2
cont(Γ\H) and

∆(Ef) = E

((
1

4
+ t2

)
f

)
.

Any f ∈ L2(Γ\H) admits a decomposition

f(z) =
∑

(f, uj)uj(z) +
1

4π

∫ ∞

−∞
(f,E(·; it))E(z, it)dt.

Example 2.12. Kim, Eisenstein series.

2.5.4. Another decomposition theorem. See Langlands’ paper [Lan1].
The residues of E(x.ϕ, λ) at the poles produce certain representations in the discrete

spectrum. These representations are orthogonal to the cuspidal spectrum and are called
the residual spectrum.

There is another Langlands spectral decomposition based on automorphic data.
Given a pair (P, σ), HP,cusp,σ is the subspace of ϕ ∈ HP whose slices ϕx(m) =

ϕ(mx), x ∈ G(A) lie in the space L2
cusp,σ(MP (Q)\MP (A)1). Let Ψ(lambda, x) be a

holomorphic family of functions in HP,cusp,σ, ψ(x) is the Fourier transform of Ψ over a
real plane, and we then form the Eisenstein series Eψ. If X is the class in X represented
by a pair (P, σ), let L2

χ(G(Q)\G(A)) be the closed, G(A)-invariant subspace generated
by the Eisenstein series Eψ associated to certain functions ψ.

Theorem 2.13 (Langlands). There is an orthogonal decomposition

L2(G(Q)\G(A)) =
⊕
χ∈X

L2
χ(G(Q)\G(A)).

Remark 2.8. If χ = (P, σ), we cannot have L2
χ ⊂ L2

P .

Remark 2.9. Be aware of the two decompositions.
All constituents of cuspidal inductions are automorphic, but may produce discrete

components, say the residual. Parabolic induction is simple in representation theory.
The point is to relate the representation with Eisenstein series.



24

However, when considering parabolic ones, we only use a subspace of functions.

What is the relation with Eisenstein series? Let (M,π) be a cuspidal automorphic
representation, we may use parabolic induction to get an automorphic representation
of G. The Eisenstein series is an explicit realization. But we could do more, we twist
the modulus factor by a number s. So to each element f ∈ IP (σ, s), we get a function
E(f, s, ·). The leading terms with respect to s define intertwining operators 16 from
IP (σ, s0)→ A(G).

Fix s, we get an embedding of IP (σ, s). But to get spectral decomposition, we only
need to integrate with respect to some real line with a fixed real part. Different choices
of such lines differ from (finitely many) residues, and these contribute to the residual
spectrum.

we are considering L2(G(F )\G(A)), so we need to fix the line. Intuitively, the line
should be the line with real part zero. So that the resulting Eisenstein series is L2

(unitary).
But if we consider all cuspidal representations, those arbitrary s induce the Eisenstein

series that is not L2. The lowest term is a subquotient of E(σ, s), but there are
more subquotients, that is, the higher coefficients. These subquotients exhaust all
automorphic representations.

Each (M,π) has both a continuous part and a discrete part.
Just consider the spectral decomposition of L2(R). Each exponential function etx

is a function (not L2), the representation is x → etx (check right translation). Then
integration over these functions (Fourier transform) is the spectral decomposition.

Integral over vertical lines, different lines induce residues.

3. Langlands correspondence and Langlands functoriality

Sataka isomorphism says that certain representations of a (split) algebraic group G
over a nonarchimedean local field are classified by something related to its compact dual.
Langlands correspondence is a generalization of Satake isomorphism. It aims to find a
classification of admissible representations over G(Fv) or automorphic representations
over G(AF ). The parameters are some Galois representations, or the modified version
of Galois representations, the L-parameters.

We always assume G is a quasi-split reductive algebraic group over F .

3.1. Class field theory. Let F be a local or global field, F be its separable closure, and
GalF := Gal(F/F ) be the absolute Galois group of F . The finite Galois extensions E of
F determine normal subgroups GalE of finite index and an isomorphism GalF /GalE ∼=
GalE/F . Equipped with the profinite topology, GalF is a locally compact topological
group and there is an isomorphism of topological groups

GalF = lim←−GalE/F = lim←−GalF /GalE .

The central problem in number theory is to understand the Galois group GalF . The
standard method to study a group is to consider its representations. Class field theory
is the theory of characters of GalF , or equivalently, classification of abelian extensions
in terms of an invariant of F itself.

16They are not embedding, IP (σ) is not irreducible in general
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3.1.1. Local class field theory. Let F be a nonarchimedean local field17. For simplicity,
we assume F is the completion of a number field with respect to a nonarchimedean
valuation. F , equipped with the metric topology, is locally compact. Let O be the
subring of F consisting of elements of nonnegative valuation, π be a uniformizer, and
P be the unique maximal ideal generated by π.

We first consider a finite Galois extension K/F . Then we have a local reciprocity

map θK/F : GalabK/F
∼= F×/NK/FK

×. If x ∈ F×, then we write θK/F (x̄) = (x,K/F ).

If K/F is unramified, then (x,K/F ) = Frv(x) where Fr is the Frobenius element in
GK/F . The inverse of the local reciprocity map is exactly the isomorphism of Tate

groups Ȟ−1(GalK/F ,K
×) = GabK/F

∼= Ȟ1(GalK/F ,K
×) = F×/NK/FK

× given by cup

product of a canonical generator uK/F of the cyclic group H2(GalK/F ,K
×).

Let F ab be the maximal abelian extension of F , the Galois group GalFab/F is GalabF ,

the abelianization of GF . If K is abelian, then θK/F (x,K/F ) ∈ GalK/F . Let K varies

over finite abelian extensions, we get a homomorphism θF : F× → lim←−GalK/F =

GalFab/F = GalabF . The local reciprocity map defines an isomorphism of F× onto W ab
F ,

where W is the Weil group to be defined later.

3.1.2. Global class field theory. The main object in class field theory for global fields is
the idele class group CF = A×

F /F
×. The group A×

F has a natural map to the group of
fractional ideals by “ignoring local units”. This descends to a map form CF to the ideal
class group. Therefore, a map from the ideal class group to some group G naturally lifts
to a map from the idele class group. But they are not so good because the ideal class
group is just a finite group. We may construct more homomorphisms of CF from some
admissible homomorphisms. Let S be a finite set and IS the group of fractional ideals
outside S. An admissible homomorphism φ : IS → G is a homomorphism satisfying
a continuous property with respect to F×. The lifting is simple: we may multiply a
sequence an ∈ F× to twist an element x ∈ A×

F so that the S-component (anx)S tends

to zero, and the image of the class x̄ is therefore determined by the value of (anx)
S , the

component outside of S. The admissibility of φ is exactly the condition that guarantees
the convergence of φ(anx)

S 18.

Remark 3.1. A Dirichlet character. and Grossencharacter.

One important property is that, given an admissible homomorphism from the group
of fractional ideals outside a finite set S

Now we can study the global class field theory. Let K/F be an abelian extension.
Let P be a prime of F that is unramified in K, we may define a unique Frobenius

element
[
K/F
P

]
∈ GK/F . We may extend linearly to fractional ideals of F whose prime

factors are unramified in K, called the Artin symbol of K/F . The Artin symbol is
admissible, thus lifts uniquely to a continuous homomorphism of the idele class group

17The Galois group of C is trivial. The Galois group GalR = GalC/R ∼= {±1} is isomorphic to

R×/N(C×) = R×/R+ = {±1}.
18This is common sense in number theory: an object defined over a global field is determined by

its behavior at unramified places, which is an all but finitely many set. Another example is the Galois
group, the Frobenius defined over unramified places is a dense subset.
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CF = A×
F /F

×. We call the homomorphism the Artin map of K/F and denote it by
θK/F : CF → GK/F . The Artin map is naturally compatible with the local Artin
reciprocity maps.

Now let K vary over finite abelian extension, the compatible finite Artin maps lift
to map θF : CF → GalabF . θF is surjective and the kernel is the identity component
(CF )0 of CF .

Example 3.1. We consider the field Q. By Kronecker-Weber theorem, any abelian
extension is a subfield of a cyclotomic field Q(ζn), so Qab is just the union of all
cyclotomic fields. Now the Galois group of Q(ζn) is isomorphic to (Z/nZ)×. Let n

vary, the Galois group GalabQ = GalQab/Q is the inverse limit

lim←−(Z/nZ)
× = Ẑ×.

The finite adele Af is Ẑ⊗Q, and therefore A× = A×
f ⊕ R×(Ẑ× ⊗Q)⊕ R×.

The isomorphism x 7→ x⊕ 1 induces the isomorphism

Ẑ× ∼= (A×
f × R×)/(Q×R+)19.

We thus establish the class field theory for Q.
The Frobenius Fr(p) maps to (p · · · , 1, · · · , p) where 1 is in the p-th place, and the

geometric Frobenius Fr−1(p) maps to (1, · · · , p, · · · , 1). This rigidity condition actually
determines the isomorphism since the all the Frobenius generates a dense subgroup by
Chebotarev density theorem.

3.1.3. Class field theory as Langlands correspondence. Let F be a number field, a
grössencharacter is just a quasiquaracter of CF . In particular, if K/F is a finite abelian
extension of number fields and ω is a character of GK/F , then we may naturally lift
to a grössencharacter φ := ω ◦ θK/F . This correspondence has very nice properties.
We may canonically define Artin L-functions for characters ω and Hecke L-functions
for Grossencharacters. The Artin map has the property that the L(s, ω) and L(s, θω)
coincide. Roughly, this means that Frobenius on the Galois side corresponds to the
primes on the CF side.

In modern language, a grössencharacter is just an automorphic representation of G1

over F . Now class field says that the Artin map gives a correspondence of characters
(one-dimensional representation) of the Galois group GF corresponding to automorphic
forms of GL1. The Langlands correspondence seeks a parameterization of automorphic
representation over reductive groups in terms of Galois representations.

3.1.4. The Weil group. We need modifications of the Galois groups GalF to study rep-
resentations. The Weil group for F is a tuple (WF , ϕ, {rE}) where WF is a topological
group, ϕ : WF → GalF is a continuous homomorphism with dense image. For each
finite extension E/F set WE := ϕ−1(GalE), rE : CE → W ab

E is required to be an iso-
morphism, where CE = E× (when F is local) or E×\AE (when F is global). These data
are required to satisfy some compatibility conditions (See [Tat]) and the isomorphism

WF → lim←−WE/F

19Note that the quotient group R×/R+ ∼= Z/2Z is essential to distinguish {±} ∈ Ẑ×
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is an isomorphism, where WE/F := WF /W
ab
E . In short, WF modifies the finite level

structures without changing (absolute) class field theory.

• If F = C, then WF = C×, ϕ is the trivial map and rF = id.
• If F = R, then WF = C× ∪ C× where j2 = 1 and jcj−1 = c̄. Here ϕ takes C×

to 1 and jC× to the conjugacy automorphism.
• If F is a nonarchimedean local field with residue field extension, WF has a
simple description. Let F ur be the maximal unramified extension of F in F .
Then we have a short exact sequence

1→ IF → GalF
π−→ Galk → 1

where IF = Gal(F/F ur) is the inertia group of F , Gal(F ur/F ) ∼= Galk. The

group Galk = lim←−Z/nZ = Ẑ is a profinite group. The Frobenius Fr is mapped

to 1 ∈ Ẑ, and is a topological generator of Galk. As a set, WF is the inverse
image of Z ⊂ Ẑ under π. But WF is equipped with a different topology with
the subset topology induced from GalF : we require that Z is equipped with the
discrete topology. In other words, WF = IF ⋊ ⟨Fr⟩.
• For global fields, there is no intrinsic description. Formally, the Weil group WF

is the extension of CF by GalE/F defined by the fundamental class uE/F and
the absolute Weil group WF is the inverse limit of WE/F .

The Weil form of the L-group. Given a reductive group G over F , the L-group
is the semidirect product of Ĝ and GalF induced by a Galois action on Ĝ. Now we
have a continuous map ϕ : WF → GalF , the Weil form of the L-group is simply
defined as the semidirect product of Ĝ and WF where the Weil group action is the
obvious composition. The map ϕ has a dense image, so no information is lost in such
a variation.

3.2. The local and global Langlands correspondence.

3.2.1. The Langlands group LF . The local Langlands group for a local field is WF if F
is archimedean, and is LF =WF × SU(2) if F is nonarchimedean.

If F is a number field, the hypothetical Langlands group LF is supposed to be
characterized in terms of automorphic representations of general linear groups. It
was predicted by Langlands on the assumption that for any N , there is a bijective
correspondence between irreducible N -dimensional representations of LF , and cuspidal
automorphic representations of the group GL(N).

The group LF is expected to be a locally compact extension

1→ KF → LF →WF → 1

of the global Weil group WF by a compact connected group KF . It should come with
a conjugacy class of local embeddings over the corresponding Weil groups, for any
valuation v of F .

3.2.2. The local Langlands correspondence.

Definition 3.2. An L-parameter is a representation of WF into LG that commutes
wuth the projection to GalF . Two L-parameters are equivalent if they are conjugate by
an element of Ĝ(C).
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Remark 3.2. Not all L-parameters are of interest in Langlands program. We only need
to consider a subset called the relevant L-parameters. This is a board condition that
is satisfied in many interesting cases. If G is quasisplit, all L-parameters are relevant.

Let v be a place of F . We have a natural embedding GalFv → GalF . This induces
a natural morphism from the local L-group to the global L-group. Given an auto-
morphism representation π, the composition defines a map GalFv →L G which factors
through LGv. So we may get a local L-parameter. This is compatible with the natural
decomposition.

Conjecture 1 (Local Langlands conjecture). There is a bijection between L-packets
and equivalent classes of L-parameters satisfying various conditions. See [BCSGKK],
chapter 11.

Axioms, rigidity
This is proven. Geometric representation for a survey.

3.2.3. The global Langlands correspondence. Now we consider the global case. Let G
be a reductive algebraic group defined over a number field F . It is not known what
group (if any) parameterizes L-packets of automorphic representations.

3.2.4. L-functions. A natural question is: Which automorphic representation corre-
sponds to which Galois representation?

We need to describe the correspondence is to consider L-functions. They are mero-
morphic functions defined over C associated with certain mathematical objects. The
two most significant properties of L-functions are: (1), Euler product. This is the
local-global principle. (2), functional equation. For example, the functional equations
of automorphic forms for cusp eigenforms is a reflection of the automorohy conditions

of the cusp forms with respect to the matrix

(
0 1
−1 0

)
. The converse theorem says

that a Fourier series
∑
anq

n is a cusp form for SL(2,Z) if and only if the associated L-
function satisfies a functional equation. The point is that, we can define L-functions for
Galois representations and automorphic representations, so we may expect that an au-
tomorphic representation is associated with a Galois representation if their L-functions
are the same.

There are two ways of associating an L-function to an automorphic representation.
One goes back to Hecke, and was generalized to GLn by Jacquet, Shalika and Piatetskii-
Shapiro. We study the eigenvalues of Hecke operators in this case. The simplest
examples are Hecke L-function for Grossencharacter (GL1), and the L-function for
cusp eigenforms defined by the Fourier coefficients (GL2) (Mellin transform). There
is another way to associate L-functions to automorphic representations, using the
local Langlands correspondence. The local factors are L-factors associated with L-
parameters, a modification of Galois representations. They essentially study the traces
of the Frobenius. Examples are Artin L-functions. Part of the content of the local
Langlands conjecture is that these two constructions give the same answer.

See [BCSGKK].
Finite group, Artin L-function. Galois side. infinite group? Galois representation?
One-dimensional case.
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The motivic L-function: easier to get Euler product. The automorphic L-function.

3.3. Representation theory over local fields.

3.3.1. Generalities. One interesting point in the representation theory of p-adic groups
is that, besides the subgroups defined geometrically (Borel subgroups can be consid-
ered as stabilizers of certain flags), there are several arithmetically defined subgroups
(Iwahori subgroups).

General picture: three classes of representations:
The main method of producing new representations from old is the process of para-

bolic induction20. Let P =MN be a parabolic subgroup withM the Levi factor and N
the unipotent factor. Given a representation of M , we may construct a representation
of G. The Jacquet-functor JN is the adjoint of this functor:

HomG(π, Ind
G
Pσ)
∼= HomM (JN (π), σ)

where π is a smooth representation of G and σ is a smooth representation of M .
Explicitly, JN (π) is the spacce of N -coinvarisnts of π with the action of M as the

natural action twisted by δ
−1/2
m .

Remark 3.3. If We have a finite dimensional representation of P , we get a vector bundle
over the flag variety. G acts by translation on the bundles, thus on global sections.
paranolic induction? geometric representation theory, Borel-Weil-Bott theorem?

An irreducible algebraic representation π is supercuspidal if rN (π) = 0 for all proper
standard parabolic subgroups P = MN of G. equivalently, supercuspidal representa-
tions are those that do not occur as constituents of any IndGP (σ). We may consider
them as “primitive” representations of G. They can also be characterized by the fact
that their matrix coefficients are compactly supported modulo the center Z of G 21.

An important way to construct supercuspidal representation is the Weil represen-
tation. We form good reductive pairs, so that: (1). we do not need to lift to the
metaplectic group. (2),GO(V ) is simple. Say, it is a quadratic extension. Then us-
ing theta correspondence, we get representations of SL(2, F ) from characters of E×.
Relation with Jacquet-Langlands???

Some examples: from number theory. This is not surprising. From class field theory,
characters of the F ∗ (local) or CF (global) are parameterized by abelian extensions. If
E is a quadratic extension of F , the quardratic character of F× is simple, just look at
if an element is the norm of E×.

20Geometrically, G/P is a flag variety, a P -representation is a vector bundle over G/P . Induction?
at least the morphisms of induced representations are differential operators. Falting, Chai, P.227.
Representations are determined by characters, but uniponent elements have zero traces, so we may
ignore them?

21Casselman’s subrepresentation theorem asserts that for a reductive Lie group G, any irreducible
admissible representation is a subrepresentation of a parabolically induced representation. So there are
no supercuspidal representations in the real case.
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3.3.2. Representations of GL(2). See Bump’s book for a detailed description.

Remark 3.4. Why do we need the factor SU(2)? Consider GL(2) over a nonar-
chimedean local field. The non-decomposable representations are used to parameterize
special representations. See[Lan1] for a discussion.

3.3.3. The archimedean Case. Local Langlands classification is already a theorem (Lang-
lands classification).

Roughly speaking, admissible representations are Langlands quotients of parabolic
induced representation of tempered representations.

Example 3.3 (SL2(R)). Wiki: representation theory of SL2(R).
• The discrete series, limit of discrete series, and unitary principal series repre-
sentations Iε,µ with µ purely imaginary are already tempered, so in the cases
the parabolic subgroup P is SL(2,R) itself.
• The finite-dimensional representations and the representations Iε,µ are the irre-
ducible quotients of the principal series representations. The finite dimensional
representations are quotients of special representations.

We may explain this using L-parameters and L-packets.
Every admissible representation of G(R) is the Langlands quotient of a parabolic

induced representation.
Using L-parameters, discrete parameters, if not, then is in a parabolic subgroup. see

[Gol].

Example 3.4 (Langlands classification for GLn(R)). The building blocks for irre-
ducible admisssible representations of the representations GLn(R) are the following
three types representations of GL1(R) and GL2(R): (1). 1⊗ | · |tR, where 1 is the rep-

resentation of SL±
1 (R) = {±}. | · |tR(t ∈ C) is a character on R+. (2). sgn⊗ | · |tR, here

sgn is the signature map on {±1}. (3), Dl ⊗ |det(·)|tR. here Dl is the discrete series

on SL±
2 defined as the Ind

SL±
2 (R)

SL2(R)D
+
l = Ind

SL±
2

SL2
(R)D−

l . |det(·)|
t
R is defined for positive

scalar matrices. To any partition n =
r∑
i=1

ni such that ni = 1 or 2, we associate the

block diagonal subgroup D =
∏
GLni . For each i, let σi be a representation of the

above three types, and write tj for the parameter t of σj . If the parameters satisfies the

condition n−1
i Re ti ≥ n−1

i+1Re ti+1(∀i), then the Langlands quotient J(σ1, · · · , σr) is an
irreducible admissible representation of GLn(R). They exhaust all the irreducible ad-
missible representations up to infinitesimal equivalence. Two parameters (σi) and (σj)
define the same representation if and only if they are the same up to a permutation.

Now the real Weil group WR = C× ∪ jC× is already defined. Irreducible repre-
sentations of WR have dimension one or two. They are listed as follows: (1). One-
dimensional representations (+,t): φ(z) = |z|tR, φ(j) = 1. (2). One-dimensional
representations (-,t): φ(z) = |z|tR, φ(j) = −1. (3). Two-dimensional representations

(l, t) where l ∈ Z, l ≥ 1. Let (e1, e2) be a basis, then φ(reiθ) =

(
r2teilθ 0

0 r2te−ilθ

)
, and

φ(j) =

(
0 (−1)l
1 0

)
.
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Every finite-dimensional semisimple representation of WR is absolutely irreducible.
So an n-dimensional representation ofWR defines a partition of n into 1’s and 2’s. From
the above description, there is an obvious map from an n-dimensional representation to
a representation of some block diagonal matrixD. Up to a permutation, we may assume
the decreasing condition for ti is satisfied, and we get a admissible representation of
GLn. After modulo further permutations, we get the Langlands correspondence for
GLn(R). Note that the multiplicity one theorem holds for GLn(R), that is, each L-
packet consists of one representation.

The calculation is even simpler for GLn(C). See [Kna2] for details.

Note that in these cases, a packet consists of only one representation.
There are two approaches to define L-functions and ε-factors: the Tate method using

Fourier analysis (studying K-finite matrix coefficients) or the Langlands method using
classification theorem. They are also discussed in [Kna2] and they get the same results.

3.4. Langlands conjecture for classical groups.

3.4.1. Langlangds conjecture for GL(N). They are already verified.
Some strong theorems.

Theorem 3.5 (multiplicity one theorem).

converse theorem.
superspecial
[Art2] global case: suggested by the existence of the Langlands group LF , param-

eters (µ, ν), with µ a unitary, cuspidal automorphic representation of GL(m), ν the
irreducible representation of SU(2) of dimension n.

simple: discrete; general, all automorphic representations. (Eisenstein series)

Theorem 3.6 (Moeglin-Waldspurger). There is a canonical bijection

ψ → πψ, ψ ∈ Ψsim(N)

from Ψsim onto the set of irreducible unitary representations of GL(N,A) that occur
in the automorphic, relative discrete spectrum L2

disc(GL(N,F )\GL(N,A)) of GL(N).
Moreover, for any ψ, πψ occurs in the relative discrete spectrum with multiplicity one.

If ψ = (µ, ν) belongs to Ψsim(N), the representation πψ is a Langlands quotient.
It is by definition the unique irreducible quotient of the representation of GL(n,A)
obtained by parabolic induction from the unitary representation

x→ µ(x1)|detx1|
n−1
2 ⊗ µ(x2)| detx2|

n−3
2 ⊗ · ⊗ µ(xn)| detxn|−

n−1
2

of the standard Levi subgroup

MP (A) = {x = (x1, ·, xn) : xi ∈ GL(mi, )}.

Corollary 3.7. There is a canonical bijection

ψ → πψ, ψ ∈ Ψ(N),

from Ψ(N) onto the irreducible constituents of the full automorphic spectrum L2(GL(N,F )\GL(N,A)).
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Theorem 3.8 (Jacquet-Shalika). The mapping

ψ → C(ψ), ψ ∈ Ψ(N)

is a bijection from Ψ(N) to C(N).

Theorem 3.9 (Local Langlands correspondence). compatible with L-functions, tensor
product to Rankin-Selberg products

The Rankin-Selberg product is the automorphic form side of the tensor product.

3.5. Langlangds conjecture for classical groups. Just a survey.

3.6. Global Langlands correspondence and geometry. Langlands program is a
link between automorphic representations and Galois representations. Suppose we
could associate a Galois representation with a modular form, one natural problem is to
seek the geometric realization of this Galois representation. If such a correspondence
could be found, the information of the geometric object X is encoded in automorphic
forms. Conversely, numerous constructions and theorems in algebraic geometry can be
translated into results in automorphic forms. One example is Deligne’s proof of Fourier
coefficient estimation(?) using Weil conjecture in algebraic geometry.

We may define L-functions in this case to study the correspondence. If X is an
algebraic variety defined over a number field, the classical Hasse-Weil L-function es-
sentially counts the points of X after modulo primes. The generalization for motives
is the motivic L-function.

There is a class of Galois representations called geometric Galois representations
using p-adic Hodge theory. It is conjectured that geometric Galois representations are
motivic, that is, they are subquotients of étale cohomology groups of some variety X
over F .

3.6.1. Shimura varieties. Maybe the simplest example of Galois representations is étale
cohomology groups. Given a variety X over F , the ℓ-adic cohomology groups are
natural Galois representations. The automorphic representations? Deligne’s paper.
congruence relations. If we assume further that there is also a Hecke action. We may
compare the two actions and get global Langlands correspondence. Shimura varieties
are examples of such good varieties.

Let S = ResC/R be the Deligne torus. A Shimura datum is a pair (G,X) consisting
of a (connected) reductive algebraic group G defined over Q and a G(R)-conjugacy
class X of homomorphism h : S → GR satisfying certain axioms (See [Mil1]). Then
X has a unique structure of a complex manifold such that for every representation
ρ : GR → GL(V ), the family (V, ρ ◦ h) is a holomorphic family of Hodge structures.
Moreover, it forms a variation of Hodge structure, andX is a disjoint union of hermitian
symmetric domains.

For any sufficiently small open subgroup K of G(Af ), the double coset space

Shk(G,X) = G(Q)\X ×G(Af )/K22

22Compare with the isomorphism in automorphic form: the archimedean component is replaced
with X.
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is a finite union of locally symmetric varieties. The varieties ShK(G,X) are complex
algebraic varieties and they form an inverse system over all sufficiently small open
subgroups K. The Shimura variety Sh(G,X) associated with the Shimura datum
(G,X) is defined to be the inverse limit of such ShK(G,X). It admits a natural right
action of G(Af ). This action induces a natural Hecke algebra action. Note that this is
only defined over the inverse limit of varieties.

Though Shimura varieties are constructed as (inverse limits of) complex algebraic
varieties, they turn out to be algebraic. They can be defined canonically over a number
field F , called the reflex field of the Shimura datum. The construction of the canonical
model relies on the moduli interpretation of the Shimura varieties, and is characterized
by the Galois action on CM points, i.e., those representing varieties with the most
exceptional Hodge classes. In particular, the étale cohomology groups are naturally
Galois representations.

Remark 3.5. One reason we consider Shimura varieties instead of connected Shimura
varieties is that they are defined over a common number field. If we consider only
connected Shimura varieties, each congruence quotient is again defined over a number
field, but the number field depends on the congruence subgroup. One example is
the Siegel Shimura variety: The principal congruence subgroup Γ(N) defines X(N)
parameterizing abelian varieties with the principal level structure of level N , which is
defined over the cyclotomic field Q(ζN ).

Another important property is that Shimura varieties have moduli interpretations:
they are moduli space of abelian varietis with structures, motives, or other special
algebraic varieties ([Mil3]). Therefore, Hecke algebra action. Hecke correspondence.

3.6.2. Some examples. Deligne-Serre theory

Theorem 3.10 (Deligne, Deligne-Serre). Suppose f =
∑

≥1 anq
n is a normalized,

cuspidal Hecke eigenform of weight k ≥ 1 and level Γ0(N). Then there exists a unique
semisimple Galois representation

Rℓ(f) : Gal(Q/Q)→ GL2(Qℓ)

whose trace of Frobenius is the Fourier coefficient ap for almost all primes p.

The construction relies on a realization of cusp forms as cohomology over modular
curves.

The Eichler-Shimura congruence relation expresses the local Lfunction of a modular
curve at a prime p in terms of the eigenvalues of Hecke operators. It identifies a part of
the Hasse-Weil zeta function of a modular curve with the product of Mellin transforms
of weight 2 modular forms. For precise formulation and proof, see [RS].

The modularity theorem (or Tanayama-Shimura conjecture) states that any elliptic
curve over Q is a modular curve. One consequence of this theorem is Fermat’s Last
Theorem.

3.7. Langlands’ principle of functoriality. One amazing consequence of the Lang-
lands correspondence is Langlands’ principle of functoriality. The automorphic repre-
sentations are parameterized by some representations, and there are some natural maps
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of representations between different groups. So there should be some natural correspon-
dence between automorphic representations of different reductive groups. This is not
obvious at all. Just think why (???). On the other hand, Langlands functoriality may
also be viewed as a tool for proving cases of the Langlands correspondence. In fact,
WF can be considered as the L-group of the trivial group, then functoriality recovers
the Langlands correspondence.

Here are some classical examples. See [BCSGKK] or [Bum].

3.7.1. Real representations. We consider the simplest case. Consider the inclusion
SL2(R) → GL2(R). But we first study the inclusion SL2(R) → SL±

2 (R) and the
induced representations. The finite-dimensional representations and principal series
representation split into two inequivalent pieces, and the discrete series yield irreducible
representations on S±

2 (R) whose restriction to SL2(R) is the direct sum of the discrete
series and its conjugate. This construction gives us the representations of SL±

2 (R).
The irreducible representations of GL2(R) are just representations of SL2(R) twisted
by a character of R. See [Kna5].

Their L-groups are PGL2(C) and GL2(C). The natural projection of L-groups
induces the Langlands functoriality Π(SL2(R))→ Π(GL2(R)). The finite-dimensional
representations and principal series representations corresponds to packets of twists of
two representations. The L-packets of discrete series corresponds to packets of twists
of a discrete series.

What is the L-group of SL±
2 (R)? It should be a double cover of PGL2(R). I am not

even sure that SL±
2 is algebraic...

3.7.2. Inner forms. Let G be connected, reductive, and quasisplit over F and let H
be an inner form of G. Then LH =L G, the identity map is an L-homomorphism,
and we should have a corresponding lifting. In the case G = GL2 and H = D×, the
multiplicative group of a rank-2 division algebra over F , we get the Jacquet-Langlands
correspondence.

3.7.3. Base change and induction. Suppose that K is a finite extension of F . Let
I : GalK → GalF be the natural inclusion. Suppose we have a split group H over
F , then G = ResK/FHK is an algebraic group and we have a canonical L-morphism

u :L H →L G, where LG is [K;F ]-copies of LH0 parameterized by Gal(K/F ), the
Galois group acts on LG through the quotient Gal(K/F ). Given a L-parameter φ for
H, u ◦ φ ◦ i is a L-morphism for G.(maybe we could define G just as the base change
and the restriction is defined only for the natural comparison of L-groups???) This is
called base-change or automorphic restriction.

The L-functions.

Example 3.11 (Zeta functions). Let F/Q be a finite abelian extension and let N :
F× → Q× be the norm map. A Dirichlet character χ induces a Hecke character
psi := χ ◦N . Their L-functions are related by:

L(ψ, s) =
∏
ρ∈Ĝ

L(ρχ, s)(?)
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In particular, if we choose χ to be the trivial character, then we get the Dirichlet series
for F .

If F is a quadratic field, the zeta function ζF (s) tells you how the primes decompose,
and the functional equation is equivalent with quadratic reciprocity.

If F is Q(ζn), both zeta functions have a simple pole at s = 1. Therefor L(χ, 1) ̸= 0
whenever χ ̸= 1. This is an essentical step in proving Dirichlet’s theorem on arithmetic
progressions. See [Ser] for details.

Example 3.12 (Maass forms). Maass form. real quadratic extension. The characters
of the quadratic field should correspond to elliptic modular forms. These are, Maass
forms.

We may also define automorphic induction.

3.7.4. Group theoretic examples. There are standard algebraic operators in represen-
tations, this defines natural L-homomorphisms between algebraic groups. The tensor
product map ⊗ : GL(m)⊗GL(n)→ GL(mn) is a L-homomorphism of L-groups from
GLm ×GLn to GLmn

23.
Symmetric powers: the standard group homomorphism: GL(2) → GL(r + 1): con-

sider the symmetric powser SymrV where V is the standard representation of GL(2).

3.7.5. Methods. Some methods to study functoriality (Gelbart):

• theta correspondence
• L-function, converse theorem
• trace formula

I will focus on the trace formula method.

3.8. Geometric Langlands correspondence. By definition, global fields are either
number fields or function fields of algebraic curves defined over finite groups. In the
function field case, everything should be interpreted as geometric objects, which makes
the proof simpler because we may use geometrical methods. The Langlands correspon-
dence in this case is now a theorem proved by V.Drinfeld and L.Lafforgue. Another
advantage is that all completions are non-archimedean: points of F are irreducible poly-
nomials. Let P be an irreducible polynomial of degree d, the residue field is Fqd [[t]].
see [Fre].

But we can do more. Since the geometric constructions can be defined for curves
over arbitrary fields, we get a correspondence of these geometric objects for curves over
an arbitrary field. This is the geometric Langlands correspondence. We briefly discuss
the geometric Langlands for GLn defined over a curve X24 defined over finite fields or
C.

Now let’s recall some definitions. First, assume X is over a finite field. One side
is simple, the Galois group Gal(F/F ) can be considered as the fundamental group of
the curve X, and its n-dimensional representations can be interpreted as local systems

23Let (µ,U) (resp. (ν, V )) be a m(resp, n)-dimensional representation of a group G. Fix basis for
U and V , we get matrices µ(g) ∈ GL(m) and ν(g) ∈ GLn. Then the matrix for the tensor product
(µ⊗ ν, U ⊗ V ) is µ(g)⊗ ν(g). So this is the universal tensor product formula for representations.

24Here a curve is the analogue of number fields in number theory
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of rank n over X. The other side is more complicated. An automorphic representa-
tion unramified at all points of X defines a function over GLn(F )\GLn(A)/GLn(O)
whose value at the point x is the vector vx stable under Ox25. It is well known that
GLn(F )\GLn(A)/GLn(O) is the set of isomorphism classes of rank n vector bundles on
X. Now we want to extend these constructions to curves over C. GLn(F )\GLn(A)/GLn(O)
should be replaced with Bunn, the moduli stack of rank n vector bundles. Functions
over Bunn should be replaced with perverse sheaves (or, D-modules): we have an action
of local Galois groups, the alternating sum of traces of the geometric Frobenius on H i

defines a function. There are Hecke correspondences Heckei with projections to Bunn
and X × Bunn, whose points are vector bundles extended by i-copies of skyscraper
sheaf at one point. This Hecke correspondence defines operators on the category of
perverse sheaves: Hi : P(Bunn) → P(Bunn). Then a perverse sheaf K is called a
Hecke eigensheaf with eigenvalue E if K ̸= 0 and we have the isomorphisms

ιi : Hi(K) ∼= ∧iE ⊠K[−i(n− i)], i = 1, · · · , n.
The geometric interpretations of Galois representations are irreducible rank n local

systems on X, and the automorphic representations are Hecke eigensheaves on Bunn.
Then the geometric Langlands correspondence for GLn is an equivalence of the two cat-
egories associating a local system E with the Hecke eigensheaf AutE , a Hecke eigensheaf
with respect to E.

The geometric Langlands correspondence is also related to conformal field theory.
But I have to skip the discussion. See [Fre].
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